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Abstract
Grafting is a well-established practice to facilitate asexual propagation in horticultural and

agricultural crops. It has become a method for studying molecular aspects of root-to-shoot

and/or shoot-to-root signaling events. The objective of this study was to investigate differ-

ences in gene expression between the organs of the scion and rootstock of a homograft

(Arabidopsis thaliana). MapMan and Gene Ontology enrichment analysis revealed differen-

tially expressed genes from numerous functional categories related to stress responses in

the developing flower buds and leaves of scion and rootstock. Meta-analysis suggested in-

duction of drought-type responses in flower buds and leaves of the scion. The flower buds

of scion showed over-representation of the transcription factor genes, such as Homeobox,

NAC, MYB, bHLH, B3, C3HC4, PLATZ etc. The scion leaves exhibited higher accumulation

of the regulatory genes for flower development, such as SEPALLATA 1–4, Jumonji C and

AHL16. Differential transcription of genes related to ethylene, gibberellic acid and other sti-

muli was observed between scion and rootstock. The study is useful in understanding the

molecular basis of grafting and acclimation of scion on rootstock.

Introduction
Grafting is a widely used and traditional method of asexual propagation in fruit crops which
do not reproduce true-to-type from seed [1]. The benefits of grafting in vegetable crops are also
being recognized in recent years [2]. Rootstocks influence the scion development in several
ways, affecting the traits of agricultural interest, such as vegetative vigour, stress tolerance,
yield, fruit quality etc. [2,3]. The controlling effect of rootstock over scion is possibly due to
altered root-to-shoot and/or shoot-to-root chemical signaling [3]. Several studies on long-
distance signaling via graft-union provide evidences for multiple types of mobile signals,
such as hormones [4,5,6,7], proteins [8,9], ribonucleoprotein [10], RNAs [11], small RNAs
[12,13,14,15,16], minerals [17,18] etc, conferring a wide range of effects on scion development.

Despite the wide use of grafting in agriculture, very little is known about the molecular
mechanism of rootstock-regulation of scion’s phenotypes. Gene expression studies are useful
approaches in understanding the genes involved in the effect of the rootstock. Transcriptional
profiling in the scions of Prunus cerasus [19] andMalus domestica [20] revealed differences in
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the expression level of 99 and 116 transcripts, respectively, which could contribute to root-
stock-regulation of biomass in scion. Recently, effect of heterografting has been examined on
gene expression in scion [21] and graft interface [22] in Vitis vinifera. In the shoot apex of
scion, grafted onto vigorous rootstock, the differentially expressed genes related to growth,
stress, hormone signaling and hybrid vigour possibly confers vigour effects [21]. Up-regulation
of stress response was notified at graft interface of heterografts, as compared to the homografts,
suggesting that the tissues involved in graft-union could recognize and behaved differently in
case of self or non-self grafting partner [22].

Grafting has become an experimental approach for studying plant biology, taking into ac-
count graft-transmissible long distance transport events and their impact on physiology of
scion or rootstock, taking Arabidopsis thaliana as a model organism [23]. Since the first dem-
onstration of inflorescence stem grafting in A. thaliana [24], several improvements have been
made in the grafting protocol [23]. Recently, a modified wedge-style grafting of the primary in-
florescence has been reported to obtain healthiest floral graft [25]. The aim of the study was to
investigate the transcriptional profile in the organs of scion and rootstock in A. thaliana.

The present study analyses expression difference between scion and rootstock of a homo-
graft in A thaliana. Microarray, a tool for accurate and high throughput gene expression analy-
sis [26], was employed to examine transcriptome changes in the organs (flower bud and leaf)
of scion and rootstock. The study furthers our understanding about the differential gene ex-
pression during flower and leaf development on scion and rootstock, and the genes involved in
the acclimation of scion on rootstock after grafting.

Material and Methods

Plant material and growth conditions
The Arabidopsis thaliana var. Columbia-0 (Col-0) plants were used in the grafting experi-
ments. The dried seeds were sterilized following the standard procedures, and were sown on
Soilrite bed in pots. The pots were kept at 4°C in the dark for 2 days for stratification of seeds,
and to synchronize seed germination. After stratification, the pots were shifted to PGC 20
growth chamber (Conviron, Canada) under long-day conditions (16-h light/8-h dark at
150 μmol m-2 s-1 irradiance) at 22°C ± 1°C and 65% humidity.

Homografting
Homografting was carried out on young inflorescence stems of A. thaliana plants of uniform
age (4–5 weeks) and height (~10 cm), following the procedure described by Nisar et al. [25],
with some modifications. The primary inflorescence stem was cut horizontally by using a razor
blade, and immediately placed in a petri dish containing sterile water; this part was used as
scion for grafting on the same plant. A drop of water was placed on the cut end of the primary
inflorescence stem of the same plant, to be used as rootstock. A vertical incision (~1 cm) was
made in rootstock and the scion was cut in a wedge shape. Cut ends of the scion and rootstock
were attached and wrapped with a parafilm around the graft. A support of a stick was provided
to the plant. The plant was covered with a plastic bag to maintain high humidity for three days.
The grafting was performed on multiple plants. Three grafted plants showing the best scion
growth and development were selected for the study. The newly emerged un-opened flower
buds and leaves were harvested from the side branches of scion and rootstock, at the same
time. Harvesting of the samples was performed during 10 to 20 days after the graft (DAG). The
samples were immediately frozen in liquid nitrogen and stored at -80°C till further use. The ex-
periment was done in three independent biological replicates.
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RNA extraction and cDNA synthesis
Total RNA was extracted from the harvested leaf and flower bud samples using Spectrum Plant
Total RNA kit (Sigma-Aldrich, USA), following the manufacturer’s instructions. On-column
DNase (Sigma-Aldrich, USA) treatment was performed as instructed in the manual. The quali-
ty and concentration of total RNA were determined by using NanoQuant M200 Pro (Tecan)
and agarose gel electrophoresis visualization. Double stranded cDNA synthesis, in vitro tran-
scription to synthesize biotin labeled aRNA, purification and fragmentation of aRNA, and hy-
bridization of arrays was performed following the protocol described in the technical manual
of Affymetrix.

Microarray
Affymetrix Arabidopsis ATH1 Genome Array GeneChip was used for microarray experiment.
Affymetrix ATH1 GeneChip, a 3’ in vitro transcription (3’ IVT) expression array, contains
more than 22,500 probe sets, representing approximately 24K genes. Labeling and hybridiza-
tion of ATH1 GeneChips (one sample per chip) was performed according to the manufactur-
er’s instructions (http://www.affymetrix.com/support/technical/manuals.affx). The hybridized
arrays were processed by running fluidics script FS450_0004 on an Affymetrix GeneChip Flu-
idics Station 450 and scanned on Affymetrix GeneChip Scanner 3000. The quality of hybridiza-
tion was verified according to the Affymetrix microarray standards. The expression console of
Affymetrix’s GeneChip Command Console (AGCC) software was used for computing cell in-
tensity data of probesets and their positional values from image file. The intensities of probe ar-
rays were normalized by using GeneSpring GX v12 (Agilent Technologies, Santa Clara, USA).
The data has been submitted to NCBI (http://www.ncbi.nlm.nih.gov), with accession number
GSE61631. Robust Multi-array normalization algorithm (RMA) values of probe sets were used
for further statistical analysis. One-way ANOVA analysis was carried out in GeneSpring soft-
ware with ‘Asymptotic’ p value computation and Benjamini-Hochberg false discovery rate
(FDR) for multiple test correction (at p� 0.05). The probe sets satisfying the criteria of p-value
(� 0.05) and fold change (� 2) were used as differentially expressed genes for further analysis.

Functional annotation of the differentially expressed probe sets was obtained using the infor-
mation available at TAIR (http://www.arabidopsis.org/tools/bulk/microarray/index.jsp) and
PLEXdb (http://www.plexdb.org/modules/PD_general/tools.php). MapMan software was em-
ployed for visualization of differences in gene expression, and enrichment of functional catego-
ries in differentially expressed genes using theWilcoxon rank-sum test (p value� 0.05) [27,28].

Enrichment of Gene Ontology (GO) terms in the differentially expressed genes was per-
formed using AgriGO analysis tool (http://bioinfo.cau.edu.cn/agriGO) [29], with Fisher tests
and Bonferroni multiple testing correction (p� 0.05). Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) categories was assigned by the plant gene set enrichment analysis toolkit
(http://structuralbiology.cau.edu.cn/PlantGSEA/analysis.php) with fisher test function.

Quantitative RT-PCR
For the validation of microarray data, quantitative RT-PCR was performed for five randomly
selected genes in three biological replicates. cDNA was prepared from 500 ng of total RNA
using Transcriptor First Strand cDNA Synthesis Kit (Roche, USA) according to manufacturer’s
instructions. Gene expression was analyzed using 2X QuantiTect SYBR Green (Qiagen, USA),
with a 200 nM primer concentration in a qRT-PCR machine (7500 Fast Real-Time PCR Sys-
tem, Applied Biosystems), according to the manufacturer’s instructions. The expression of
genes of interest was normalized using housekeeping gene (polyubiquitin 10; At4g05320) and
relative change in gene expression was quantified as described previously [30].
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Results and Discussion

Homografting
Homografting experiments were carried out on young primary inflorescence stems of Arabi-
dopsis plants (Fig 1A). Though difficulties have been encountered in maintaining hydraulic
turgor across the graft junction [23], with the recent developments in grafting technique [25],
the integrity of the graft union formation has been improved. In a successful flowering stem
graft, vascular connection is established by about 7 DAG [25]. The floral stem graft, which
maintains shoot apical dominance with a taller primary stem, indicates a functional vascular
connection at the graft junction [25]. Three floral stem grafts with the best scion growth and
development (Fig 1B), indicating appropriate transport of water, nutrients and signalling mole-
cules across the graft junction, were selected for the study. The longitudinal and transverse

Fig 1. Homografting in A. thaliana plants. (A) Representative Arabidopsis plants selected for floral stem wedge-grafting (scale 2.5 cm). (B) Grafted plants
(scale 2.5 cm) selected for harvesting the newly emerged un-opened flower buds and leaves (scale 500 μm) from the side branches of scion (up) and
rootstock (down). The arrow shows rootstock in the plants. (C) A floral stem graft (10 DAG) showing wedge junction (scale 5 mm). (D) A longitudinal section
through the floral stem graft (10 DAG) showing callus proliferation (arrow) near the wedge junction (scale 1 mm). (E) A transverse section frommiddle of the
floral stem graft (10 DAG) (scale 500 μm). (F) Siliques (scale 1 mm) and seeds (scale 500 μm) of rootstock, and (G) scion. (H) Bar diagram representing
length, and (I) seed number in mature siliques of rootstock and scion. The error bars indicate standard error in three biological replicates.

doi:10.1371/journal.pone.0124438.g001
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sections across the graft-junction (10 DAG) confirmed the establishment of vascular connec-
tions between scion and rootstock stems (Fig 1C–1E). Callus proliferation near the wedge junc-
tion (Fig 1D) is indicative of good regenerative growth, confirming the integrity of graft-union
[25]. The newly emerged un-opened developing flower buds and leaves were harvested from
the side branches of scion and rootstock (10–20 DAG), for gene expression analysis. At maturi-
ty, siliques of scion were comparable to that of rootstocks (Fig 1F–1I). However, the slight re-
duction in silique length and number of seeds could be due to grafting generated effects on
scion development.

Homografting alters the expression of many genes in flower buds and
leaves
The transcriptional changes were examined in flower buds and leaves of scion and rootstock,
emerged during 10 to 20 days after the homograft. A total of 840 genes were identified as differ-
entially expressed, by two folds or more at p� 0.05, in flower buds and/or leaves of scion and
rootstock (Fig 2, S1 Table). The fold expression of five randomly selected genes was validated
by qPCR analysis (S1 Fig). The differentially expressed genes have been further analyzed
and discussed.

Fig 2. Venn diagram showing differentially expressed genes in flower bud and leaf (scion vs.
rootstock;� 2 fold change; p� 0.05) (U = up-regulated, D = down-regulated). The details of the genes
have been given in S1 Table.

doi:10.1371/journal.pone.0124438.g002
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Divergent profiles of differentially expressed genes in flower buds and
leaves
MapMan, AgriGO, and KEGG categorization of the differentially expressed genes revealed a
differential level of accumulation of a divergent set of genes in flower buds and leaves of scion
as compared to rootstock (Tables 1–6). Up-regulated hormonal metabolism was observed in

Table 1. MapMan functional categories (BINs) for significantly up-regulated (2� fold) genes in the flower buds of scion and rootstock.

Bin number Bin name Elements p-value

Up-regulated in scion

33.2 Development late embryogenesis abundant 5 2.48E-03

27.3.22 RNA.regulation of transcription.HB,Homeobox transcription factor family 7 3.03E-03

17 Hormone metabolism 25 2.60E-02

17.1 Hormone metabolism.abscisic acid 7 4.98E-02

17.1.3 Hormone metabolism.abscisic acid.induced-regulated-responsive-activated 2 2.59E-02

17.5 Hormone metabolism.ethylene 7 1.49E-02

17.5.1 Hormone metabolism.ethylene.synthesis-degradation 4 4.32E-03

29.2 protein.synthesis 5 2.95E-02

27.3.26 RNA.regulation of transcription.MYB-related transcription factor family 2 2.98E-02

27.3.24 RNA.regulation of transcription.MADS box transcription factor family 2 4.29E-02

1.1.1 PS.lightreaction.photosystem II 6 4.53E-02

1.1.1.2 PS.light reaction.photosystem II.PSII polypeptide subunits 6 4.53E-02

Up-regulated in rootstock

31 Cell 9 8.00E-04

31.1 Cell organisation 5 1.60E-03

17.5 Hormone metabolism.ethylene 5 2.74E-02

17.5.2 Hormone metabolism.ethylene.signal transduction 4 1.94E-02

3 Minor CHO metabolism 2 3.56E-02

3.4 Minor CHO metabolism.myo-inositol 2 3.56E-02

3.4.4 Minor CHO metabolism.myo-inositol.myo inositol oxygenases 2 3.56E-02

29.5.11.4.3.2 Protein.degradation.ubiquitin.E3.SCF.FBOX 3 4.47E-02

The details of the genes are given in S4 Table.

doi:10.1371/journal.pone.0124438.t001

Table 2. MapMan functional categories (BINs) for significantly up-regulated (2� fold) genes in the leaves of scion and rootstock.

Bin number Bin name Elements p-value

Up-regulated in scion

34 Transport 9 2.44E-02

34.99 Transport.misc 2 2.60E-02

11.6 Lipid metabolism. Lipid transfer proteins 3 3.79E-02

Up-regulated in rootstock

26 Misc 17 1.66E-03

26.16 Misc.myrosinases-lectin-jacalin 3 2.72E-02

29 protein 7 3.28E-02

27.3.26 RNA.regulation of transcription.MYB-related transcription factor family 2 4.74E-02

20.1.7.12 Stress.biotic.PR-proteins.plant defensins 2 4.92E-02

The details of the genes are given in S4 Table.

doi:10.1371/journal.pone.0124438.t002
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Table 3. AgriGO categories for significantly up-regulated (2� fold) genes in the flower buds of scion and rootstock.

GO term Ontology Description Contingency p-value

Up-regulated in scion

GO:0010876 P Lipid localization 11, 15, 435, 22464 7.9E-13

GO:0009414 P Response to water deprivation 18, 155, 428, 22324 8.6E-09

GO:0009415 P Response to water 18, 64, 428, 22315 1.9E-08

GO:0009719 P Response to endogenous stimulus 39, 748, 407, 21731 1E-07

GO:0009725 P Response to hormone stimulus 37, 687, 409, 21792 1E-07

GO:0042221 P Response to chemical stimulus 65, 1684, 381, 20795 3.4E-07

GO:0009737 P Response to abscisic acid stimulus 20, 255, 426, 22224 5.1E-07

GO:0051179 P Localization 61, 1621, 385, 20858 1.8E-06

GO:0019915 P Lipid storage 6, 15, 440, 22464 2.2E-06

GO:0019953 P Sexual reproduction 9, 56, 437, 22423 4.5E-06

GO:0010033 P Response to organic substance 41, 974, 405, 21505 8.9E-06

GO:0009738 P Abscisic acid mediated signaling pathway 9, 63, 437, 22416 1.1E-05

GO:0015833 P Peptide transport 9, 63, 437, 22416 1.1E-05

GO:0006857 P Oligopeptide transport 9, 63, 437, 22417 1.1E-05

GO:0050896 P Response to stimulus 94, 3107, 352, 19372 2.3E-05

GO:0009788 P Negative regulation of abscisic acid mediated signaling pathway 5, 14, 441, 22465 2.5E-05

GO:0006810 P Transport 55, 1556, 391, 20923 3.4E-05

GO:0051234 P Establishment of localization 55, 1562, 391, 20917 3.8E-05

GO:0015979 P Photosynthesis 12, 145, 434, 22334 6.1E-05

GO:0022900 P Electron transport chain 9, 84, 437, 22395 8.4E-05

GO:0009628 P Response to abiotic stimulus 41, 1083, 405, 21396 0.00009

GO:0009968 P Negative regulation of signal transduction 6, 34, 440, 22445 0.00011

GO:0010648 P Negative regulation of cell communication 6, 34, 440, 22446 0.00011

GO:0055114 P Oxidation reduction 13, 187, 433, 22292 0.00016

GO:0009624 P Response to nematode 7, 54, 439, 22425 0.00018

GO:0006091 P Generation of precursor metabolites and energy 16, 278, 430, 22201 0.00023

GO:0009755 P Hormone-mediated signaling pathway 14, 223,432, 22256 0.00024

GO:0032870 P Cellular response to hormone stimulus 14, 223,432, 22257 0.00024

GO:0016491 F Oxidoreductase activity 54, 1302, 392, 21177 4.7E-07

GO:0005215 F Transporter activity 48, 1128, 398, 21351 1.1E-06

GO:0022857 F Transmembrane transporter activity 37, 853, 409, 21626 1.3E-05

GO:0022891 F Substrate-specific transmembrane transporter activity 30, 677, 416, 21802 6.1E-05

GO:0022804 F Active transmembrane transporter activity 25, 521, 421, 21958 7.7E-05

GO:0015144 F Carbohydrate transmembrane transporter activity 10, 105, 436, 22374 8.5E-05

GO:0022892 F Substrate-specific transporter activity 33, 794, 413, 21685 8.6E-05

GO:0015295 F Solute:hydrogen symporter activity 9, 86, 437, 22393 9.9E-05

GO:0005402 F Cation:sugar symporter activity 9, 86, 437, 22394 9.9E-05

GO:0005351 F Sugar:hydrogen symporter activity 9, 86, 437, 22395 9.9E-05

GO:0008324 F Cation transmembrane transporter activity 20, 375, 426, 22104 0.00011

GO:0015294 F Solute:cation symporter activity 10, 111, 436, 22368 0.00013

GO:0015293 F Symporter activity 10,112, 436, 22367 0.00014

GO:0009055 F Electron carrier activity 22, 455, 424, 22024 0.00019

GO:0051119 F Sugar transmembrane transporter activity 9, 95, 437, 22384 0.0002

GO:0016021 C Integral to membrane 32, 510, 414, 21969 3.1E-08

GO:0031224 C Intrinsic to membrane 39, 858, 407, 21621 2.7E-06

GO:0005576 C Extracellular region 20, 378, 426, 22101 0.00012

(Continued)
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flower buds of both scion and rootstock. However, several genes related to hormonal signaling
pathways were over-represented in scion buds, conferring tolerance to stress [31]. Higher accu-
mulation of the transcripts for Late Embryogenesis Abundant (LEA) proteins in flower buds
of scion could protect cellular proteins from aggregation, under the abiotic stresses such as
desiccation, osmotic stresses, temperature, salinity etc [32]. The transcription factors, such
as homeobox genes, MADS box and MYB which express in responses to several stresses
[33,34,35,36,37], and hormonal stimuli [33,38,39], were up-regulated in flower buds of the
scion. In addition, a few genes involved in protein synthesis and photosynthesis were up-
regulated in the flower buds of scion, as compared to that of rootstock (Table 1). In contrast to
scion, genes associated with the MapMan functional categories of cellular processes, cell orga-
nization, CHOmetabolism, and F-box proteins which are critical for the controlled degrada-
tion of cellular proteins, were up-regulated in the flower buds of rootstock (Table 1). This
could be indicative of comparatively increased rate of cell division in flower buds of rootstock.

Enrichment of Gene Ontology (AgriGO) terms in the differentially expressed genes revealed
that most of the genes up-regulated in the flower buds of scion, belonged to the biological process
of responses to different stimuli (chemical, abiotic stresses and hormone etc.), localization, trans-
port, and oxidoreductase activities (Table 3). The GO terms related to microtubule-based move-
ment and motor activities, involved in cytoskeleton organization and developmental processes
[33], were enriched in flower buds of rootstock (Table 3). The leaves of scion showed a compara-
tively high level of accumulation of genes associated with transport and lipid metabolism (Tables
2 and 4). Rootstock leaves accumulated the transcripts predicted to be involved in responses to
stress, biotic and abiotic stimuli, and defense and wound responses (Tables 2 and 4).

The functional significance of genes was also explored by KEGG, which exhibited significant
over-representation of genes associated with amino acid metabolism, and biosynthesis of other
secondary metabolites such as alkaloids, stilbenoid, diarylheptanoid, and gingerol in flower
buds (Table 5), and flavonoid and phenylpropanoid biosynthesis in leaf (Table 6) of scion. Al-
kaloids have several biological significance of being active stimulators, inhibitors and termina-
tors of growth [40]. The genes could participate in several regulation mechanisms and confer
protection against environmental stresses to the plant organs [41]. In rootstock, the genes asso-
ciated with ascorbate, aldarate and inositol phosphate metabolism were up-regulated in flower
buds (Table 5), whereas leaves exhibited active amino acid metabolism, glutathione and alpha-
linolenic acid metabolism, and plant-pathogen interaction (Table 6).

Meta-analysis
Similarity search meta-analysis was performed against 3287 diverse collections of Arabidopsis
microarray data sets listed in Genevestigator, by using the differentially expressed transcripts
between scion and rootstock. The perturbation showing maximum similarity with our data

Table 3. (Continued)

GO term Ontology Description Contingency p-value

GO:0009523 C Photosystem II 6, 39, 440, 22440 0.00022

Up-regulated in rootstock

GO:0007018 P Microtubule-based movement 5, 51, 147, 22428 3.70E-05

GO:0003777 F Microtubule motor activity 5, 66, 147, 22413 0.00012

GO:0003774 F Motor activity 5, 87, 147, 22392 0.00039

The details of the genes are given in S4 Table.

doi:10.1371/journal.pone.0124438.t003
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Table 4. AgriGO categories for significantly up-regulated (2� fold) genes in the leaves of scion and rootstock.

GO term Ontology Description Contingency p-value

Up-regulated in scion

GO:0010876 P Lipid localization 10, 15, 149, 22734 6.60E-16

GO:0010584 P Pollen exine formation 8, 14, 151, 22735 1.50E-12

GO:0010927 P Cellular component assembly involved in Morphogenesis 8, 18, 151, 22461 7.00E-12

GO:0010208 P Pollen wall assembly 8, 18, 151, 22462 7.00E-12

GO:0048646 P Anatomical structure formation involved in Morphogenesis 10, 85, 149, 22394 1.30E-09

GO:0006869 P Lipid transport 10, 113, 149, 22366 1.70E-08

GO:0009555 P Pollen development 9, 110, 150, 22369 1.70E-07

GO:0012505 C Endomembrane system 43, 2768, 116, 19711 4.70E-07

GO:0022607 P Cellular component assembly 11, 221, 148, 22258 7.90E-07

GO:0048229 P Gametophyte development 9, 163, 150, 22316 3.70E-06

GO:0048869 P Cellular developmental process 13, 386, 146, 22093 5.10E-06

GO:0008289 F Lipid binding 10, 227, 149, 22252 7.10E-06

GO:0048856 P Anatomical structure development 23, 1232, 136, 21247 2.30E-05

GO:0032989 P Cellular component morphogenesis 9, 221, 150, 22258 3.70E-05

GO:0045229 P External encapsulating structure organization 8, 179, 151, 22300 5.50E-05

GO:0009791 P Post-embryonic development 13, 501, 146, 21978 7.20E-05

GO:0032501 P Multicellular organismal process 24, 1479, 135, 21000 0.00013

GO:0009653 P Anatomical structure morphogenesis 12, 463, 147, 22016 0.00014

GO:0033036 P Macromolecule localization 11, 404, 148, 22075 0.00018

GO:0007275 P Multicellular organismal development 23, 1426, 136, 21053 0.0002

GO:0032502 P Developmental process 25, 1644, 134, 20835 0.00026

GO:0044085 P Cellular component biogenesis 11, 431, 148, 22048 0.0003

GO:0044464 C Cell part 111, 12783, 48, 9696 0.00056

GO:0005623 C Cell 111, 12783, 48, 9697 0.00056

GO:0016747 F Transferase activity, transferring acyl groups other than amino-acyl groups 7, 221, 152, 22258 0.0012

GO:0030528 F Transcription regulator activity 23, 1628, 136, 20851 0.0012

GO:0008415 F Acyltransferase activity 6, 165, 153, 22314 0.0013

GO:0003700 F Transcription factor activity 21, 1448, 138, 21031 0.0015

Up-regulated in rootstock

GO:0050896 P Response to stimulus 51, 3107, 99, 19372 4.00E-10

GO:0051707 P Response to other organism 19, 465, 131, 22014 5.50E-10

GO:0009607 P Response to biotic stimulus 19, 507, 131, 21972 2.20E-09

GO:0051704 P Multi-organism process 20, 603, 130, 21876 6.00E-09

GO:0006952 P Defense response 19, 622, 131, 21857 5.20E-08

GO:0010033 P Response to organic substance 23, 974, 127, 21505 1.80E-07

GO:0045087 P Innate immune response 11, 265, 139, 22214 2.40E-06

GO:0006955 P Immune response 11, 280, 139, 22199 4.00E-06

GO:0002376 P Immune system process 11, 280, 139, 22199 4.00E-06

GO:0006950 P Response to stress 28, 1766, 122, 20713 1.70E-05

GO:0042221 P Response to chemical stimulus 27, 1684, 123, 20795 2.10E-05

GO:0009723 P Response to ethylene stimulus 7, 134, 143, 22354 4.40E-05

GO:0009814 P Defense response, incompatible interaction 6, 97, 144, 22382 6.50E-05

GO:0010200 P Response to chitin 6, 115, 144, 22364 0.00016

GO:0009719 P Response to endogenous stimulus 15, 748, 135, 21731 0.00017

GO:0009611 P Response to wounding 6, 132, 144, 22347 0.00032

GO:0009753 P Response to jasmonic acid stimulus 6, 146, 144, 22333 0.00054

(Continued)
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comprised the transcriptional comparison between drought study vs control plants in flower
buds and leaves (S2 Fig). The meta-analysis suggests that grafting induces drought-type re-
sponses in flower buds and leaves of scion, which could play a role in acclimation to grafting
induced stresses.

Table 4. (Continued)

GO term Ontology Description Contingency p-value

GO:0030246 F Carbohydrate binding 7, 139, 143, 22340 5.50E-05

GO:0012505 C Endomembrane system 44, 2768, 106, 19711 2.70E-08

GO:0005618 C Cell wall 13, 514, 137, 21965 5.10E-05

GO:0030312 C External encapsulating structure 13, 518, 137, 21961 5.50E-05

The details of the genes are given in S4 Table.

doi:10.1371/journal.pone.0124438.t004

Table 5. KEGG categories for significantly up-regulated (2� fold) genes in the flower buds of scion
and rootstock.

Description Hits Total p-value

Up-regulated in scion

Tropane, piperidine and pyridine alkaloid biosynthesis 3 18 4.53E-03

Cysteine and methionine metabolism 5 64 5.25E-03

Stilbenoid, diarylheptanoid and gingerol biosynthesis 5 66 5.93E-03

Limonene and pinene degradation 5 69 7.05E-03

Tyrosine metabolism 3 24 9.27E-03

Phenylalanine metabolism 5 80 0.0124

Methane metabolism 5 82 0.0137

Glyoxylate and dicarboxylate metabolism 3 30 0.0161

Biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid 7 166 0.0231

Fatty acid elongation in mitochondria 1 2 0.0478

Up-regulated in rootstock

Ascorbate and aldarate metabolism 2 31 0.0137

Inositol phosphate metabolism 2 37 0.0188

The details of the genes are given in S4 Table.

doi:10.1371/journal.pone.0124438.t005

Table 6. KEGG categories for significantly up-regulated (2� fold) genes in the scion leaf.

Description Hits Total p-value

Up-regulated in scion

Flavonoid biosynthesis 2 19 6.39E-03

Biosynthesis of phenylpropanoids 5 247 0.0153

Phenylpropanoid biosynthesis 3 104 0.0238

Up-regulated in rootstock

Alpha-Linolenic acid metabolism 3 28 6.54E-04

Metabolism of xenobiotics by cytochrome P450 2 21 7.04E-03

Alanine, aspartate and glutamate metabolism 2 41 0.0234

Glutathione metabolism 2 52 0.0356

Plant-pathogen interaction 3 138 0.043

The details of the genes are given in S4 Table.

doi:10.1371/journal.pone.0124438.t006
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Differential expression of transcription factors in flower buds and leaves
Out of about 25,500 genes, around 2000 transcription factor genes have been recognized in
Arabidopsis genome [42]. Transcriptional regulation plays a pivotal role in temporal and spa-
tial control over gene expression in plants. Altered expression levels of transcription factors
were observed in flower buds and leaves developed on scion and rootstock (Fig 3).

Fig 3. A heatmap of differentially expressed transcripts related to transcription factors in flower bud and leaf (scion vs. rootstock;� 2 fold change;
p� 0.05). The color scale at the top of each heat map shows expression values in fold change. The details of the genes have been mentioned in S2 Table.

doi:10.1371/journal.pone.0124438.g003
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Homeobox transcription factor family (HB) genes were significantly up-regulated in flower
buds (e.g. at2g18550, at2g46680, at4g36740, at5g66700 and at3g61890) and leaves of scion
(at2g18550, at2g46680, at5g66700, at1g14440, at1g75240), as compared to rootstock. In several
studies, the expression regulation of homeobox genes by different abiotic and biotic stimuli has
been inferred [33,34,38,43]. The higher level of transcript accumulation of homeobox genes in
the vegetative and reproductive organs of scion could be helpful in achieving tolerance to sub-
sequent stresses after grafting.

MYB transcription factor super family play regulatory roles in differentiation, metabolism
and development processes, and defense responses in plants [35]. Scion flower buds showed
higher expression of MYB genes which are known to regulate and/or respond during cell
cycle (at5g59780) [44], differentiation (trichome initiation) (at3g27920) [46], phenylpropa-
noide pathway (at1g22640) [46], abiotic stress responses (e.g. drought, light and wounding)
(at1g06180) [45]and abiotic and biotic stimuli (at1g71030 and at5g58900) [47]. However, the
expression of MYB35/TDF1 (at3g28470), essential for anther tapetum development [48], was
observed down regulated by three folds in scion flower buds. This could be indicative of graft-
ing effect on tapetum development. Surprisingly, up-regulation of the MYB genes was not ob-
served in scion leaves at a significant level. On the other hand, rootstock leaves exhibited
enhanced expression of the MYB-related genes having role in signal transduction (at5g06800)
[49], and express in response to abiotic or biotic stimuli (at5g05790) [47].

Basic helix-loop-helix (bHLH) gene family members (about 160 in Arabidopsis) are univer-
sal transcription factors in eukaryotes; however, the biological roles of the bHLH genes are poor-
ly understood in plants. Some of the bHLH TFs, up-regulated in scion flower buds, are known
to participate in regulating biosynthesis of the sterol derivatives-brassinosteroids (at1g25330)
[50], transcription of peroxidases to balance reactive oxygen species (ROS) (at2g47270) [51],
early gynoecium development (at5g67110) [52], and double fertilization (at4g00050) [53]. Scion
leaves showed enhanced level of expression of bHLH TFs which regulate stomata movement
and photoperiodism (at1g51140) [53,54]and anthocyanin biosynthesis (at3g25710) [53].

The transcripts for B3-type TFs (at2g36080, at5g60140, at5g32460 and at3g46770), involved
in flower development [55], and drought responsive PLATZ family TFs (at1g76590, at1g21000
and at1g31040) [53,56], were abundant in scion flower buds. Expression of stress-inducible
NAC transcription factors (at5g39610, at5g13180, at1g52890, at1g01720, at4g28530 and
at2g33480) was up-regulated at significant levels in scion flower buds. The NAC transcription
factors have previously been shown to be ABA, drought and NaCl-inducible [57].

The ethylene response factor, AP2- RAP2.6 (at1g43160), was significantly up-regulated in scion
flower buds. It functions in plant response to various abiotic and biotic stresses, possibly through
ABA-dependent pathway [58,59]. The importance of RAP2.6 has been emphasized in achieving
water-stress tolerance in plant tissues [59]. This was further corroborated by visualization of abun-
dance of genes associated with phytohormones, mainly ABA, that could play important roles in
mediating responses to various stresses in scion flower buds (Fig 3). Enhanced transcript accumula-
tion of key regulators of sulfur assimilation pathway, LSU2 (at5g24660) [60]and HY5 (at5g11260)
[61], could be indicative of implications of stress, presumably water stress [60], on the sulfur assimi-
lation in scion flower buds. Drought conditions affect the regulation of sulfur assimilation in plant
tissues, and it has been anticipated as a fertile ground for new discoveries connecting primary sulfur
metabolism with the stress responses, mainly drought [62]. The expression elevation of bZIP1
(at5g49450), a positive regulator of plant tolerance to salt, osmotic and drought stresses [63], water-
deficit stress related remorin family protein (at2g41870) [64]and the stress responsive heat shock
C1 (at3g24520) [53]anticipates role of these genes in acclimating scion on rootstock.

The E genes of ABCDE model, SEPALLATA (SEP) 1–4, are essential for the normal devel-
opment of petals, stamens, carpels and sepals [65]. SEP 1–4 genes (at5g15800, at3g02310,
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at1g24260 and at2g03710) were up-regulated in the leaves of scion, as compared to rootstock.
Mutation in SEP genes leads to development of flowers composed of leaf-like organs, whereas,
over-expression promotes early flowering without affecting floral morphology [66]. In addi-
tion, some other key regulators of flowering, Jumonji C and AHL16, were up-regulated in
scion leaves. Jumonji C (at3g20810) is a histone demethylase which regulates the period length
in Arabidopsis by chromatin remodeling [67]. AHL16 is an AT-hook DNA binding protein,
which regulates vegetative to the reproductive phase transition of the meristem, and flowering
time [68]. The enhanced level of transcripts for SEP 1–4, AHL16 and Jumonji C genes could be
suggestive of the initiatives taken by scion for regulating flowering. The MYB transcription fac-
tor, ATRL2 (at2g21650), was highly expressed in rootstock leaves. The gene has been observed
to be involved in stress responses [53,69], besides in ovule development and control of floral
asymmetry [70]. Rootstock leaves showed elevated transcription of genes related to ethylene
(at4g17500, at5g47220, at4g17490, at4g32800, at5g07580 and at1g13260) and gibberellic acid
(at1g66350 and at5g56300). Thus, enhanced expression was observed for the genes related to
ethylene and gibberellic acid in scion flower buds and rootstock leaves (Fig 4).

Fig 4. MapMan visualization of differentially expressed genes (scion vs. rootstock; p� 0.05) assigned
to the functional category of hormonemetabolism in (A) flower bud, and (B) leaf. The details of the
genes have been mentioned in S3 table.

doi:10.1371/journal.pone.0124438.g004
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Highly expressed genes
A total of 18 genes (other than transcription factors) were identified with an expression differ-
ence (scion vs rootstock) of at least 8 folds in flower buds and leaves (Table 7). The transcript
level of dehydration and ABA inducible genes- ABA responsive protein-related (at3g02480)
[56], Histone H1-3 (at2g18050) [71], Responsive to ABA 18 dehydrin family protein
(at5g66400) [71]and protein phosphatase 2C (at1g07430 and at3g11410) [72,73], were higher
by many folds in scion flower buds and leaves (Table 7). This indicates existence of ABA-
mediated signaling in scion which could help the scion organs in withstanding grafting related
stress, such as water deficiency. This is further supported by higher level of expression of Late
Embryogenesis Abundant-7 protein in scion buds which confers resistance to abiotic stresses
and ABA sensitivity [74]. The grafting may induce ethylene production in scion flower buds, as
suggested by the several fold up-regulation of 1-Aminocyclopropane-1-carboxylate (ACC) oxi-
dase which is involved in the final step of ethylene production in plant tissues [75,76]. Expres-
sion of Cysteine Endopeptidase 1 was also found highly expressed, which could be related to
ethylene regulation [77]or in response to stress stimuli [78]in scion flower buds. Another ethyl-
ene induced and flowering related gene, Xyloglucan Endotransglucosylase/hydrolase3 [79],
was up-regulated in scion flower buds. In scion buds, no gene was down-regulated with a dif-
ference of at least 8 folds.

Scion leaves showed higher accumulation of the transcripts for Histone H1-3, ABA-
responsive protein-related, Cold Regulated Gene27 (at5g42900) [80], Defensin-like protein
(at3g59930) [81], Cinnamyl-alcohol dehydrogenase (at1g09500) [81]and Lipid transfer pro-
tein4 (at5g59310) [81]. In rootstock leaves, the transcript for a gene of Glucosinolate biosyn-
thetic process (at3g45160) was highly up-regulated. Glucosinolate biosynthesis is known to be
involved in defense signaling pathways, and its expression is induced in response to salicylic

Table 7. Genes (other than TFs) showing at least 8-fold (bold) differential expression (scion vs rootstock) in flower buds and/or leaves.

Putative gene function GeneID Fold Change in flower bud Fold change in leaf

Histone H1-3 at2g18050 27.04 8.24

Responsive to ABA18 at5g66400 20.01 1.59

2-Oxoglutarate-dependent dioxygenase at2g25450 18.92 2.34

ABA-responsive protein-related at3g02480 18.69 8.70

Cysteine proteinase at5g50260 17.29 1.26

1-Aminocyclopropane-1-carboxylate (ACC) oxidase at1g12010 16.33 -1.19

Late embryogenesis abundant protein at1g52690 13.59 7.87

Protein phosphatase2C at1g07430 11.47 1.82

Xyloglucan endotransglycosylase/hydrolase3 at3g25050 11.15 -1.00

Response to cyclopentenone at2g31945 9.34 5.48

Cell wall / vacuolar inhibitor of fructosidase1 at1g47960 9.29 1.96

Cinnamyl-alcohol dehydrogenase (CAD) family at1g09500 8.33 9.38

Rapid alkalinization factor (RALF) family protein at4g14020 8.03 1.48

Cold Regulated Gene27 at5g42900 -1.06 9.91

Defensin-like (DEFL) family protein at3g59930 1.69 9.88

Cinnamyl-alcohol dehydrogenase (CAD) family at1g09500 8.33 9.38

Lipid transfer protein4 at5g59310 3.25 9.10

Glucosinolate biosynthetic process at3g45160 1.04 -9.20

The details of the genes have been given in S4 Table.

doi:10.1371/journal.pone.0124438.t007
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acid, jasmonic acid, ethylene and wound [82]. It coincides with up-regulation of the transcripts
related to salicylic acid, jasmonic acid, and ethylene in the rootstock leaves (Fig 4).

Conclusion
Grafting triggers differential expression of numerous genes related to stress, biotic and abiotic
stimuli, hormonal pathway, and flowering etc. in flower buds and leaves of the scion and root-
stock. The study is useful in understanding the molecular basis of grafting and the intermedi-
ates involved in the acclimation of scion on rootstock.

Supporting Information
S1 Fig. Quantitative RT-PCR expression analyses of five randomly chosen genes. The rela-
tive expression of the five genes was in agreement with the microarray fold change. The se-
quences of primers and details were provided in S5 Table.
(TIF)

S2 Fig. Meta analysis. The similarity search in Genevestigator, using the differentially expressed
transcripts (scion vs. rootstock;� 2 fold change; p� 0.05) revealed perturbations (top 3) com-
paring transcriptome between the drought study vs. control plants in flower buds and leaves.
(TIF)

S1 Table. Differentially regulated probe sets with� 2 fold change expression difference at
p� 0.05, between scion vs. rootstock in flower bud and/or leaf.
(XLSX)

S2 Table. Details of the differentially expressed genes showed in Fig 3.
(XLSX)

S3 Table. Details of the differentially expressed genes showed in Fig 4.
(XLSX)

S4 Table. Details of the differentially expressed genes mentioned in Tables 1–6.
(XLSX)

S5 Table. Gene-specific primers used for qRT-PCR.
(XLSX)
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