
WImpiBLAST: Web Interface for mpiBLAST to Help
Biologists Perform Large-Scale Annotation Using High
Performance Computing
Parichit Sharma1, Shrikant S. Mantri2*

1 Centre for Development of Advanced Computing (C-DAC), Pune, India, 2 National Agri-Food Biotechnology Institute (NABI), Mohali, India

Abstract

The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins.
BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of
sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and
their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional
annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is
computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source
parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using
supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using
the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of
expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for
biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for
mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is
implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST
supports script creation and job submission features and also provides a robust job management interface for system
administrators. It combines script creation and modification features with job monitoring and management through the
Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation
analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain
design decisions, describe workflows and provide a detailed analysis.

Citation: Sharma P, Mantri SS (2014) WImpiBLAST: Web Interface for mpiBLAST to Help Biologists Perform Large-Scale Annotation Using High Performance
Computing. PLoS ONE 9(6): e101144. doi:10.1371/journal.pone.0101144

Editor: Vasilis J. Promponas, University of Cyprus, Cyprus

Received February 1, 2014; Accepted June 3, 2014; Published June 30, 2014

Copyright: � 2014 Sharma, Mantri. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financially supported by the core grant of National Agri-Food Biotechnology Institute (NABI), Mohali, India and the Department of
Biotechnology, Government of India. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: NABI and CDAC-Pune have signed Memorandum of understanding (MOU) for initiating and promoting High Performance Computing
research in the Agri-Food Biotechnology domain. Under this MOU, CDAC’s on-site HPC application engineer, Parichit Sharma is deputed at NABI. There are no
other relevant declarations relating to employment, consultancy, patents, products in development or marketed products, etc. This does not alter the authors’
adherence to all the PLOS ONE policies on sharing data and materials.

* Email: shrikant@nabi.res.in

Introduction

The function of a newly sequenced gene can be discovered by

determining its sequence homology with a known protein or

family of proteins. The Basic Local Alignment Search Tool

(BLAST) is the most extensively used sequence analysis program

for sequence similarity search in large databases of sequences [1].

The chances of determining the function of new sequences are

increasing every day with the continual unprecedented growth in

size of DNA and amino acid databases. BLAST uses a heuristic

algorithm and was designed to overcome the impractical nature of

dynamic programming algorithms for searching large databases

without the use of supercomputers and other specialized hardware

[2,3].

The National Center for Biotechnology Information (NCBI)

maintains the public interface of BLAST (http://www.ncbi.nlm.

nih.gov/blast), and keeps improving it by adding new features.

The NCBI BLAST portal is routinely used by biologists for doing

a sequence similarity search for their genes of interest. With the

advent of next generation sequencing (NGS) technologies it has

now become possible to study gene expression at a genome-wide

scale through RNA-seq and metagenome sequencing experiments.

Functional annotation of the genes is done by sequence similarity

search against multiple protein databases. This annotation task is

computationally very intensive if done on standalone desktop or

server machines, and will take days to obtain complete results.

The program mpiBLAST is an open-source parallelization of

BLAST that achieves superlinear speedup [4]. It was developed to

divide and distribute BLAST searches across multiple nodes and

multiple processors to obtain results faster. It has been extensively

used to accelerate research at many universities, institutes and

hospitals (http://www.mpiblast.org). The optimized implementa-

tion of mpiBLAST has shown linear scaling on 32768 cores on the

Blue Gene/P supercomputer [5].

There is a steep learning curve for biologists to gain the

programming skills and expertise in the command line syntax

necessary to use high performance computing (HPC) clusters, and

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e101144

http://creativecommons.org/licenses/by/4.0/
http://www.mpiblast.org
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0101144&domain=pdf

although many parallel bioinformatics applications are available in

the public domain, researchers are reluctant to use them for this

reason. Without specialized training and independent study, it is

difficult for biologists to understand the application-specific

terminologies and supercomputer architecture. With these limita-

tions it becomes difficult for biologists to use mpiBLAST for

accelerating annotation. On the other hand, web servers are more

popular amongst biologists as it is not necessary for them to install

such useful tools themselves. Until now, a web interface for

mpiBLAST has not been available in the open-source domain.

Our main objective was to develop a web interface to facilitate the

use of HPC clusters by biologists.

We present here the WImpiBLAST portal that we have

developed to help biologists to overcome this limitation by having

them use a high performance computing cluster for computation-

ally intensive annotation jobs through a simple web interface.

WImpiBLAST is a user-friendly and powerful open-source web

interface for parallel BLAST searches. The following sections

discuss in detail the planned features, design decisions, architec-

ture, workflows, implementation and use case studies in the

development of WImpiBLAST.

Design

1. Feature-centric analysis of existing web portals
catering for BLAST searches

We analyzed the characteristics of some of the most widely used

and feature-rich web portals currently available for bioinformatics

applications in order to arrive at the most practical combination of

features that should be included in WImpiBLAST. We have

summarized our comparison of different web portals and their

respective features in Table 1.

For our study, we selected NCBI’s BLAST web interface [6],

wwwblast [7], Sequence Server [8], the PoPLAR science gateway

[9] and the Yabi web interface [10] in order to establish common

guidelines for web portal design and development. Since these

interfaces vary greatly in terms of the features they support, we

focused on the following characteristics to compare these web

portals:

i. Ease of installation (time and effort)

ii. Robustness and fault tolerance

iii. Accessibility from multiple platforms

iv. Support for logging and result saving

v. Support for multi-threaded or multi-node execution.

After analyzing the above mentioned bioinformatics portals and

their relevant features, we concluded that the characteristics

mentioned in Table 1 are essential for a scientific portal to ensure

user satisfaction and acceptance by a wide audience of both

technically experienced and novice users. An in-depth comparison

of the above mentioned bioinformatics portals and command line

tools, including technical aspects, are given in Tables 2 and 3. This

study helped us to determine the feasible trade-off between user-

satisfaction-led design decisions and the development effort

required to implement them.

2. WImpiBLAST: Challenges, Design and Decisions
Web portals can provide single-window access to diverse

hardware and software resources and scientific applications in a

coherent, easy to use and intuitive manner for the end user, along

with cross-platform accessibility. Recently, web portals and

standalone web interfaces have popularized otherwise complicated

command line applications across a huge user base, as evident

from the available interfaces for different bioinformatics applica-

tions, viz. [6–12].

Before initiating development of the WImpiBLAST portal we

also analyzed alternative approaches to developing this interface,

such as a desktop-based client–server model, developing an

interface using a thin client that can interact with remote servers,

or a web-based client–server model. However, there were obvious

factors that suggested the web-based scenario as a more practical

choice for the development of the application interface [13]. Some

of the primary benefits are as follows:

Table 1. Comparative analysis of existing bioinformatics web portals catering for BLAST search.

Characteristics Web portals

NCBI BLAST Web
Interface

wwwblast Web
Interface

Sequenceserver
Web Interface

PoPLAR Science
Gateway
Web Interface Yabi Web Interface

Ease of Installation Not Applicable Difficult Easy Data Unavailable Data Unavailable

Robustness
(fault tolerance and reporting)

Yes No No Data Unavailable Yes

Accessibility from multiple
platforms

Yes
(web browser
based access)

Yes (web
browser based)

Yes (web
browser based)

Yes (web
browser based)

Yes (web
browser based)

Logging functionality Yes No No Yes Yes

Multi-threaded
execution

Yes Yes Yes Data
Unavailable

Yes

Multi-node
execution

Yes No No Yes Data
Unavailable

Suitability for large
scale annotation

No No No Yes Data
Unavailable

Source Code availability
(Open Source)

No Yes Yes No Yes

doi:10.1371/journal.pone.0101144.t001

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e101144

i. Cross-platform accessibility, as only a web browser is needed

to access the web portal.

ii. Flexibility to update or change the source code, since web

interface will be hosted on a central server and new changes

will be reflected automatically each time the previous release

is replaced by a new one.

iii. Smooth user experience and minimum load, as no additional

installation is required on the user’s system.

Although the web-based approach appeared promising, there

were still some critical design decisions that affected the design and

development of WImpiBLAST; these are addressed in the

following sections.

2.1. Level of abstraction to user. As discussed by Letondal

et al. [13] and Untergasser et al. [14], the level of interface

abstraction is critical in deciding the comfort level of a user with an

interface. We tried to design a simple and feature-rich interface by

addressing the following questions:

i. Should an interface contain a number of parameters, all of

which the user should specify, thus decreasing the level of

abstraction at the cost of fine-grained control over the run-

time execution of the application, or

ii. Should an interface only consist of a few, necessary,

parameters, and handle most of the application and

computational-resource-specific details on its own?

Option (i) would have resulted in a lower development curve

(less development time and effort) and reduced code length at the

cost of a difficult user experience, as most parameters would be

filled in by the user (requiring more effort from them) and hence

there would be less validation in the code. However, this strategy

had one serious flaw in that it does not account for variation in the

level of user exposure to parallel applications and resource

management. Therefore, low levels of abstraction may prevent

less-experienced users or novices from using the web interface.

Option (ii) would have led to a higher level of abstraction and

user friendliness but would also result in a higher development

curve, as most parameters would be handled by the code. This

strategy promised an easy user experience at the expense of higher

development efforts. However, for the sake of experienced users,

the interface should also provide the facility to fine-tune the

parameters; otherwise, the default settings should take priority.

We decided to implement option (ii), thus letting users easily

complete forms as well as change parameter values whenever

desired, thereby catering to both advanced and novice users.

2.2. Logging and result saving. The issue of logging and

result saving is critical but is not discussed in detail in the literature.

There is some description of saving final or intermediate results in

[10,15], but not with respect to error handling or troubleshooting.

In the context of web portals, logging can help in terms of

recording usage data and resource-specific errors, leading to better

administration of the portal.

Table 2. Feature oriented comparison of command line open source NCBI BLAST+ and mpiBLAST application.

Features Applications

mpiBLAST (parallel version of NCBI BLAST) BLAST+

Command line execution Yes Yes

Open Source GUI available No Yes

Scalable across multiple compute nodes Yes No

Error reporting by application Yes Yes

doi:10.1371/journal.pone.0101144.t002

Table 3. Feature oriented comparison of WImpiBLAST interface with other BLAST search supporting web interfaces.

Features

Sequenceserver
(Interface
for NCBI
BLAST) PoPLAR Yabi WImpiBLAST

mpiBLAST integration No No No Yes

Creation/modification of the job Yes Yes Yes Yes

Creation/modification of workflows No No Yes No

Run time job tracking No No Data
Unavailable

Yes

Parameter customization Yes Yes Yes Yes

File upload/download/view No Yes Yes Yes

Email notifications No Yes Yes Yes

User authentication No Yes Yes Yes

Logging or Record keeping No Yes Yes Yes

Job Administration GUI No Data
Unavailable

Yes Yes

doi:10.1371/journal.pone.0101144.t003

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | e101144

Since web portals should also cater to the needs of the system

administrator by reporting job history, errors and warnings for

troubleshooting and record keeping, we tried evaluating the

answers to the following questions in order to design robust

administration modules:

i. Should new models or mechanisms be developed for

implementing the logging of usage, errors, warnings and data

at the cost of additions to software code, iterative testing and

troubleshooting, or

ii. Should advantage be taken of the default logging features of

different software components, logically integrating them to

facilitate reporting on the web interface?

Option (i) would have ensured a greater degree of customization

over the logging mechanism and fine-grained control over every

aspect of the different system components involved in logging,

such as the resource manager, job scheduler, compute nodes, and

so forth. Initially, this approach appears promising, but it does not

ensure reliability and efficiency as new models have to be

exhaustively tested before they can be put to use in practice.

Option (ii) satisfied the requirements of efficiency by leveraging

the logging mechanisms of the different software components in

the WImpiBLAST architecture, for example the logging function-

ality provided by the resource manager. To implement this option

the only requirement would be to integrate the logging mecha-

nisms of the components (resource manager, application logs, etc.)

to facilitate reporting in the web interface. Also, since such

components (resource manager, web server, etc.) have been

thoroughly tested and improved several times, there was little need

for additional testing.

We decided to follow the integration approach by implementing

option (ii), thereby ensuring the reliability and efficiency of the

administration modules.

Although there were other factors that affected the design and

development, for the sake of simplicity we have discussed only

those factors that directly affect the user and administrator

experience.

Methods

1. Architecture
Choosing an architecture to complement the features of

WImpiBLAST was a difficult decision, in part because our portal

was different from existing web interfaces as it was intended to

support parallel sequence searches and job administration by

utilizing pre-existing software components (e.g. resource manag-

ers, job schedulers, or logging daemons) and be used as a

standalone interface [8]. The open-source web interfaces that we

studied did not support parallel sequence searches along with job

monitoring and management. The motivation to adopt a three-tier

architecture for WImpiBLAST also derives from the fact that

administrators should be able to install and configure the web

portal as a separate component on top of an HPC cluster without

drastically changing the software or hardware configurations,

while users can use it without having to learn the details of the

application.

To establish a separation between the different components (the

web interface component, system software components and

computational resources components), a conceptual three-tiered

architecture for WImpiBLAST was adopted as shown in Figure 1.

The planned architecture uses design features analogous to

CHReME [16] that exploit system, software and resource

managers for job control and parallel application execution.

However, WImpiBLAST is unique as it provides exclusive job

filtering, user-specific filtering and job trace features to adminis-

trator. WImpiBLAST is organized as a group of three fundamen-

tal layers that includes both software and hardware aspects of the

HPC cluster. The primary benefit of isolated layers for partitioning

hardware, software and web components is that normal users can

be restricted to just the publicly open part of the system, whereas

the administrator can make changes to the underlying system

components without interfering with any of the users’ data. As the

target audience of the portal will only be accessing the web layer,

users need not worry about the intricacies of the underlying

hardware and software details, formulation of various application-

specific or resource management syntaxes, and so on. System

administrators can install new applications or update older

applications without interfering with the web layer components.

1.1. Layer-specific details: Function and scope. In this

section we discuss the primary functionality of each of the layers

involved in the three-tier architecture of WImpiBLAST. Also, we

will briefly describe the scope of each layer and the isolation

between them. In the current implementation each conceptual

layer and their components are invisible to the other layers. The

web layer interacts with the system layer through a web server,

which is a system layer component. Likewise, the system layer

interacts with the resource layer through application-specific

configuration files that control details of the different computa-

tional and data resources. Therefore, the system layer acts as an

interface between the web layer and the resource layer while

maintaining its own isolation and initiating communication

through system and application specific protocols.

1.1.1. Layer 1: The web layer. This is responsible for

receiving the application-specific, job-specific and file-handling-

related inputs from users and transferring them to the system layer

after formulating the correct syntax for interpretation by the

system software, application runtime and resource manager. Data

entered by the user from the web interface is logically incoherent,

and hence it will not form any meaningful query until it is

organized in a predefined syntactical format that can be

interpreted by the application environment and job scheduler.

System layer components cannot communicate with the web layer

directly. The need for correct syntax formulation and subsequent

submission to particular system layer components for processing is

fundamental in the implementation of the mechanism in the web

layer for processing the raw data entered by the user and

submitting it to specific system components. The scope of the web

layer covers transferring the user query and data to and from the

system layer, verifying parameters and alerting accordingly,

catching web-layer-specific errors and exceptions before the

wrong query or data is sent to the system, file upload or

download, file or script display functions, and so forth. Therefore

the web layer is a publicly accessible abstraction for the remaining

layers of WImpiBLAST. It isolates the system and resource details

from users, hides the complexity of the individual resources and

enables smooth interaction with the bioinformatics applications

installed on the HPC cluster.

1.1.2. Layer 2: The system and software layer. The

system layer is the functional core of WImpiBLAST, and is

responsible for forwarding user queries to the requested resources

after proper validation. This layer also houses the applications and

configuration files necessary for processing user queries received

from the web layer. The system layer enables additional validation

of the user input, providing a logging facility and error handling

that complements the features provided by the web layer. For

instance, if the query submitted by the user through the web

interface is syntactically correct but logically invalid, such as

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e101144

requesting more resources than available or using the wrong

application program in a job script, then the error will not occur in

the web layer; the system layer will either block such requests or

terminate such job requests automatically, as soon as the resource

manager encounters an invalid request for resources. Likewise,

when the application detects that a user has requested an invalid

program to be used against specific data types, the job will be

terminated by the application environment and logged accord-

ingly. In the context of WImpiBLAST, the scope of the system and

software layer includes, but is not limited to, recording user

requests, validating user queries and data, error capturing and

logging, user validation and file handling. Therefore, the system

layer acts as the core of the WImpiBLAST architecture.

1.1.3. Layer 3: The HPC resource layer. The resource

layer is responsible for job execution. The resource layer and its

components are accessible only through the cluster’s private

network and can be accessed only from the master node of the

HPC cluster. The benefit of this approach is that since all the

legitimate users will have their account on the HPC cluster, the

administrator can implement access policies, authentication

policies and user-based privileges in the system layer to ensure

fair use of resources. Also, this approach minimizes the user effort

needed to understand the system, while administrators can

configure access to system resources without the intervention of

the user. Since the web layer is isolated from the resource layer,

not every user who can access the web portal will have the same

privileges as the priority users. After login to the web portal, all

users will have a uniform view of the entire system. Jobs of high

priority users will take precedence over other users depending on

the back-end policies and rules implemented by the system

administrator. However, users can always request to modify their

resource usage limit or privileges. In the context of WImpiBLAST,

the scope of the resource layer includes, but is not limited to,

compute nodes, interconnects, storage nodes, high-speed Ethernet

infrastructure, and so on. Hence the resource layer acts as the

powerhouse of WImpiBLAST by actually executing computation-

ally intensive queries.

2. Implementation
We have used Apache Struts 1.3 (http://www.tomcat.apache.

org) for implementing the web interface. Apache Tomcat (http://

www.tomcat.apache.org) is our default application server running

on a 64-bit Centos 6.2 (http://www.centos.org) system. For

resolving user permission issues in some modules, the ganymed

application programming interface (build 250) for Java (https://

code.google.com/p/ganymed-ssh-2/) was used and for client side

validations the jqueryui (http://www.jqueryui.com) was used.

WImpiBLAST requires the installation of the Java Development

Kit (JDK) (http://www.oracle.com/technetwork/java) for the

execution of the Java programs used for validation of inputs and

email communications. We have used Java 1.7.0, but a higher

version of the JDK should also work without any issues. Torque is

the default resource manager for job submission on the HPC

cluster and we have tested our implementation with Torque

versions 3.0.2 and 3.0.5. We have tested our implementation only

with Centos 6.2 and Apache Tomcat 7.0.42. The current

implementation allows only registered users of the system (users

having an account on the HPC system) to log in and perform tasks.

Users can create and modify job scripts and submit jobs remotely

through the web interface. Also, users can upload their data to the

server, download result files or scripts, and view result files in the

web browser to track the progress of running jobs. Additionally,

users can also view or manage their jobs.

3. Procedural Workflow
This section discusses the workflow involved in using WImpi-

BLAST, describing the initiation of user requests from the web

layer, the subsequent handling and processing at the system layer

and the final allocation to the resource layer for execution. Users

will need to follow a basic one-step process to initiate their first job

through WImpiBLAST. A concise representation of the job

initiation process is shown in Figure 2, which shows the inputs

involved at different stages in job initiation and the respective

validations implemented between stages. Once a given stage

completes its processing of the input data, it subsequently pipes the

output to the next stage to complete the process; this inter-stage

data validation is also implemented in WImpiBLAST. If the

Figure 1. WImpiBLAST three-tier architecture defining non overlapping boundaries between fundamental layers of HPC resources,
system software and web layer for efficient bug tracking, layer specific statistical logging and record keeping.
doi:10.1371/journal.pone.0101144.g001

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e101144

http://www.tomcat.apache.org
http://www.tomcat.apache.org
http://www.tomcat.apache.org
http://www.tomcat.apache.org
http://www.centos.org
https://code.google.com/p/ganymed-ssh-2/
https://code.google.com/p/ganymed-ssh-2/
http://www.jqueryui.com
http://www.oracle.com/technetwork/java

output generated by a stage is not valid, or if some data is missing,

then it can’t be piped into the next stage until the user resolves all

the necessary data conflicts as indicated on the interface.

3.1. Creation and submission of a new script. A script is

an executable file that contains details related to the requested

resources (hardware and software) and mpiBLAST-specific

information. The resource-specific section may contain the

number of required computing resources, the total amount of

time required by the job, email-related information, and so forth.

The mpiBLAST-specific section may contain information such as

the location of the FASTA-format query file, the location of the

result file, the BLAST program to use, and so on. Users can easily

create a script through the script operations menu and then submit

it for execution. A screenshot of the script creation module in

WImpiBLAST is shown in Figures 3 and 4.

3.2. Illustrative sample script. A sample script created

through the web interface is shown in Figure 5.

3.3. Submission of modified script. Once a script has been

created, it can be customized for new jobs by making minor

changes through ‘‘Modify Script’’ option and submitted through

the ‘‘Submit Job’’ option. Submission of scripts to the HPC cluster

is done through the Torque resource manager. We selected

Torque because of its widespread usage, its open source advantage

and due to the past experience of our institutional users with

Figure 2. Procedural workflow in WImpiBLAST showing the initiation of mpiBLAST job, the input required at each stage and
validations between stages to prevent invalid data from entering into successive stages.
doi:10.1371/journal.pone.0101144.g002

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e101144

Torque. If the script submission is successful then the user can

easily view or manage their jobs through the web interface. A

screenshot of the job reporting module is shown in Figure 6.

3.4. File manager utility. The unique TreeView feature

shown in Figure 7 was implemented for browsing the userspace

filesystem. The files and directories are automatically sorted by

their last modification date, and the file size is displayed beside

each file. The option of downloading files and directories is

available to allow the user to download results and other files.

4. Installation
Installing WImpiBLAST requires the Apache Tomcat server

that comes with almost all Linux distributions. However, the

Torque resource manager should be installed on the system to

allow the submission, monitoring and management of jobs from

the web interface (http://www.adaptivecomputing.com). The

administrator only needs to copy the WImpiBLAST.war file to

the ‘webapps’ directory of the Apache Tomcat server and set the

parameters in the configuration file to get started with the

WImpiBLAST interface.

5. Administration and Security
This section describes the administration modules in WImpi-

BLAST and the https secure communication for login. The

administration modules are currently undergoing beta testing and

are not included with the existing WImpiBLAST package. The

administration section of WImpiBLAST is isolated from the user

section, and the administrator has unrestricted access to all jobs in

the system. The administration modules are activated when the

root user logs in from the web interface. The modules accessible to

root cannot be accessed by a non-root user. Administrators can

view, delete, hold, and release jobs from all users or a specific user

by filtering the jobs by username. The administration section also

provides a facility for viewing, in a web browser, a comprehensive

job history for any current or previously submitted job.

User management is done by the system administrator, who can

manually add and delete users and modify user settings such as

their default permissions and privileges through command line.

Users can use the same username and password for logging in to

both the WImpiBLAST portal and the HPC system.

Figure 3. Snapshot of computational resource specific section of script creation module.
doi:10.1371/journal.pone.0101144.g003

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 7 June 2014 | Volume 9 | Issue 6 | e101144

http://www.adaptivecomputing.com

6. Manuals and Demonstration Server
Users can refer to the comprehensive user manual (Text S1) for

in-depth descriptions of the functioning and handling of the

different modules of WImpiBLAST. The WImpiBLAST package

also includes an installation manual (Text S2) and a quick start

guide (Text S3) to help initiate specific tasks. A demonstration

server can be accessed at http://wimpiblast.nabi.res.in; it is

specifically intended to help researchers or users understand the

utility, robustness and simplicity of the interface. We encourage

users to download the stable release of WImpiBLAST and deploy

it at their respective HPC clusters to facilitate use by biologists.

Results and Discussion

This section discusses use cases by executing NCBI BLAST+
and mpiBLAST searches on an in-house large nucleotide database

and an non redundant (NR) protein database (downloaded from

NCBI) through the command line, other web interfaces and

WImpiBLAST. We have summarized the experimental findings,

details of the search databases and the specifications of the systems

used during the experiment in the form of tabular data.

In our use case experiment we used a symmetric multiprocessor

(SMP) server having 48 cores and our in-house HPC cluster

having 448 cores. Details of databases, programs and computing

systems can be found in Table S1 and Table S2. We executed

three use cases to observe the performance of the application

under different test conditions such as size of search database,

number of aligned sequences, number of cores and so on, as

described in following paragraphs. Tests were performed under

ideal system load when no other compute-intensive jobs were

running on the SMP server or HPC cluster in order to assess the

best performance gain achieved by the application. Also, multiple

tests were executed and the readings shown in the tables are the

best obtained during multiple runs of each use case instance.

Appropriate data-intensive scientific computing questions are

posed at the beginning of each use case for better understanding

of the analysis acceleration.

1. Use Case 1
Q1. Can mpiBLAST be used for data mining in large

nucleotide databases?

Figure 4. Snapshot of mpiBLAST specific section of create script module.
doi:10.1371/journal.pone.0101144.g004

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e101144

http://wimpiblast.nabi.res.in

An in-house large database was developed by merging wheat

RNA-seq data from 81 sequencing runs, downloaded from the

NCBI Sequence Read Archive (SRA) database. The total size of

this merged database was 272 GB. We wanted to perform data

mining in this large nucleotide database for sequences that have

similarity with the genes of interest. The requirement to filter these

sequences was important for the subsequent analysis to identify

non-synonymous variation and for allied analysis. We used 12

nucleotide sequences of varying length as query sequences to find

the turnaround time in searching the large database. The large

nucleotide database was used and the number of aligned

sequences varied from 1 to 100000 by keeping other run-time

parameters such as output format or expected value constant.

NCBI BLAST+ was executed on an SMP server through the

Sequenceserver graphical user interface (GUI) with the number of

threads set to the total number of available cores, i.e. 48, and

mpiBLAST was executed in the HPC cluster through WImpi-

BLAST with the number of cores set to 192. We used the

maximum number of threads for NCBI BLAST+ to find the

maximum core utilization and speed-up possible on the SMP

server. However, for mpiBLAST we restricted our execution to

only 192 cores because we observed saturation in the time gain of

mpiBLAST if the number of cores increased beyond 192 in our

HPC cluster. We concluded that if individual sequences were to be

searched against a large database then increasing the number of

cores beyond the threshold value of 192 cores does not provide

any further gain in performance in terms of turnaround time on

our HPC cluster. It was observed that mpiBLAST was 16 times

faster than NCBI BLAST+ for aggregate average run times of all

queries (Table 4). However, for large numbers of aligned

sequences, e.g. 100000, we executed searches with the longest

and shortest sequences only. It was observed that if the number of

aligned sequences is large then mpiBLAST outperforms NCBI

BLAST+ by roughly 51 times for sequence 6 (849 base pairs in

length) and approximately 1000 times for sequence 2 (4857 base

pairs in length). Since the data mining in question involved a huge

database of around 1.4 billion sequences, we limited the number of

aligned sequences to 100000 to make a fair estimation of the time

required to achieve BLAST search results for such a computa-

tionally intensive task (Table 5).

Figure 5. Sample created script.
doi:10.1371/journal.pone.0101144.g005

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e101144

2. Use Case 2
Q2. How much acceleration can be achieved for large-scale

transcriptome annotation by mpiBLAST on an HPC cluster?

To annotate a large FASTA-format file (having 43758

transcriptome contigs) we used mpiBLAST and the NCBI

BLAST+ program at a different number of cores to search the

NR protein database. The NCBI BLAST+ program was executed

on an SMP server through the command line with the number of

threads set to the total number of available cores, i.e. 48, and

mpiBLAST was executed in the HPC cluster through WImpi-

Figure 6. Snapshot of Job reporting module.
doi:10.1371/journal.pone.0101144.g006

Figure 7. Snapshot of File Manager module showing user home directory in the file system and options of download/upload/view
for files.
doi:10.1371/journal.pone.0101144.g007

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e101144

BLAST by using 48 and 448 cores respectively. It should be noted

that unlike Use Case 1, where we observed saturation beyond 192

cores for mpiBLAST, in this case turnaround time was decreasing

considerably with increase in the number of cores, so we employed

all 448 cores to find maximum time reduction. In this case

mpiBLAST was 1.76 times faster than NCBI BLAST+ when both

used the same number of cores, i.e. 48. However, on scaling

mpiBLAST to full capacity, i.e. 448 cores, it outperformed NCBI

BLAST+ by roughly 23.03 times. The findings of Use Case 2 are

summarized in Table 6.

3. Use Case 3
Q3. Can mpiBLAST accelerate transcriptome annotation on a

single SMP server where the number of cores is constant?

We decided to directly compare the performance of NCBI

BLAST+ and mpiBLAST by running both applications on the

SMP server. This test was performed to eliminate any scope for

biased readings due to the superiority of the underlying hardware

architecture. Since the system hardware such as processor,

memory and so on are kept constant and the run-time parameters

are constant too, this case strongly corroborates the findings

described in Use Case 1 and Use Case 2 showing better

performance by mpiBLAST. We kept the number of aligned

sequences the same, i.e. 1, and used a randomly created input file

(having 1000 contigs) extracted from the FASTA file used in Use

Case 2. In this case also, mpiBLAST was 1.2 times faster than

NCBI BLAST+ program. The findings are summarized in Table 7.

Although the gain is moderate, this result makes an excellent case

Table 4. Turnaround time computed using Sequenceserver on SMP server and WImpiBLAST on HPC cluster.

Query Sequences

Turnaround time using NCBI blastn
through Sequenceserver;
no. of threads = 48

Turnaround time using mpiBLAST
through WImpiBLAST;
no. of cores = 192

Sequence 1
(base pairs = 2576)

3.17 minutes 18 seconds

Sequence 2
(base pairs = 4857)

5.55 minutes 23 seconds

Sequence 3
(base pairs = 3749)

5.05 minutes 15 seconds

Sequence 4
(base pairs = 4407)

3.37 minutes 21 seconds

Sequence 5
(base pairs = 1643)

4.07 minutes 12 seconds

Sequence 6
(base pairs = 849)

5.11 minutes 08 seconds

Sequence 7
(base pairs = 2132)

4.03 minutes 10 seconds

Sequence 8
(base pairs = 2121)

3.13 minutes 12 seconds

Sequence 9
(base pairs = 2194)

3.16 minutes 12 seconds

Sequence 10
(base pairs = 1683)

3.21 minutes 09 seconds

Sequence 11
(base pairs = 1117)

5.18 minutes 12 seconds

Sequence 12
(base pairs = 1336)

3.52 minutes 11 seconds

mpiBLAST achieved the highest speedup in case of sequence 6 where it outperforms NCBI BLAST+ by roughly 38 times but on average mpiBLAST performed 16 times
faster than NCBI BLAST+ for aggregate run times of all queries. (No. of aligned Sequences = 1; No. of sequences = 12; Type: Nucleotide; Average base pair length: 2389; Query
sequences file: ss1_Table_4_and_5_Sequences.fasta (Text S4); Search database: In-house large nucleotide database (size = 246 GB after formatting)).
doi:10.1371/journal.pone.0101144.t004

Table 5. Turnaround time computed using NCBI BLAST+ on SMP server and mpiBLAST on the HPC cluster.

Query Sequences
Turnaround time using NCBI blastn;
no. of threads = 48

Turnaround time using mpiBLAST;
no. of cores = 192

Sequence 2
(base pairs = 4857)

5.26 hours 18 seconds

Sequence 6
(base pairs = 849)

25 minutes 29 seconds

It was observed that if a number of aligned sequences is large then mpiBLAST outperforms NCBI BLAST+ by roughly 51 times for sequence 6 (849 bp in length) and by
roughly 1000 times for sequence 2 (4857 base pairs in length). (No. of aligned Sequences = 100000; No. of sequences = 2; Type: Nucleotide; Average base pair length: 2853;
Query sequences file: ss1_Table_4_and_5_Sequences.fasta (Text S4); Search database: In-house large nucleotide database (size = 246 GB after formatting)).
doi:10.1371/journal.pone.0101144.t005

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 11 June 2014 | Volume 9 | Issue 6 | e101144

for biologists who want to search databases of a similar size to NR

for large transcriptome query files using a limited number of cores

achieving a time reduction by using mpiBLAST.

It should be noted that in Use Case 2 and Use Case 3, BLAST+
searches were executed through the command line and not via the

Sequenceserver GUI due to a limitation of the text area in

Sequenceserver. Also, in Use Case 1 the reading obtained for

Sequenceserver is not the actual processing time, but the total time

to execute BLAST searches and perform input/output, i.e. taking

sequences from the text area, processing them on the system and

serving the results back on the web page. However, this does not

affect the accuracy of the readings drastically because the time for

input/output was negligible when compared to the actual

processing time.

We have not come across any open-source portal or web

interface which enables biologists to submit parallel BLAST

sequence searches to an HPC cluster. G-BLAST [17], a grid-based

solution for mpiBLAST on computational grids, has not been

widely used due to the unavailability of the source code in the

public domain. In WImpiBLAST, we learned from our predeces-

sors and developed a solution that can be set up for small to

medium-sized HPC clusters with the least effort by administrators

as well as being easy to use by biologists who need to expedite the

annotation part of their research.

In this rapidly advancing era of genomics, due to the

tremendous computational demand for processing the data,

algorithms ported to General-Purpose computing on Graphics

Processing Units (GPGPU) [18] and Field-Programmable Gate

Arrays (FPGA) [19] hardware are being actively explored to

accelerate analysis. New algorithms, such as USEARCH and

UBLAST [20], have become very popular and are being used by

thousands of users worldwide. CloudBLAST [21], a Hadoop-

based implementation using the MapReduce paradigm, is suitable

for analyzing the massive volume of NGS data by effectively

storing and processing large data files in a scalable, cost-effective

and resilient manner. We strongly believe that such innovative

annotation acceleration solutions would be used more by biologists

when delivered through a simple-to-use interface like WImpi-

BLAST.

Future Work and Conclusion

Future work related to WImpiBLAST can progress in several

directions related to interface richness. The current implementa-

tion focuses primarily on the mpiBLAST application and uses

distinct but well-connected modules to execute parallel applica-

tions on an HPC cluster. In future, more parallel bioinformatics

applications will be integrated in WImpiBLAST framework.

Currently only users registered on the master node of the cluster

can submit jobs through WImpiBLAST, but we are trying to

integrate user mapping mechanisms such as Light Weight

Directory Access Protocol (LDAP) to allow users who do not

have an account on the HPC cluster to submit parallel jobs; this

will increase the penetration rate of WImpiBLAST among

researchers. The administration modules are currently limited to

job monitoring and management or tracing job history, but in

future the administrator will be able to create queues, adjust

resource reservation or adjust user priority through the web

interface itself. The current installation process is not entirely

platform independent due to resource manager and application

dependencies. We will consider integrating support for the

Distributed Resource Management Application API (DRMAA)

and EasyBuild or a similar tool in WImpiBLAST for making the

job management and application installation process more

flexible.

This paper presents the open-source WImpiBLAST web

interface for mpiBLAST and discusses in detail the design

decisions taken during its development, its robust architecture

and use cases. The architecture adopted in this project can also be

used as a template for porting any scientific computing applica-

tion. The user-friendly WImpiBLAST interface will facilitate and

encourage the use of supercomputing resources by biologists. This

research will have a direct impact on the rate of knowledge

discovery by accelerating various large-scale annotation projects.

Availability and Requirements
Project name: WImpiBLAST

Demonstration Server: http://wimpiblast.nabi.res.in

Download Link: http://code.google.com/p/wimpiblast/

Table 6. Turnaround time computed using NCBI BLAST+ on SMP server and mpiBLAST on the HPC cluster.

Program Used

NCBI blastx command
line execution;
no. of threads = 48

mpiBLAST through
WImpiBLAST;
no. of cores = 48

mpiBLAST through
WImpiBLAST;
no. of cores = 448

Turnaround time 96.96 hours 55 hours 4.21 hours

The readings show that on the same number of cores i.e. 48, mpiBLAST outperforms NCBI BLAST+ by roughly 1.76 times. The maximum speedup was observed when
using all 448 cores on the HPC cluster where mpiBLAST is 23.03 times faster than NCBI BLAST+. (Number of sequences in fasta file = 43758; Type: Nucleotide; No. of aligned
Sequences = 1; NCBI BLAST+ executed on SMP server and mpiBLAST executed on HPC cluster; Query sequences file: ss2_Table_6_Sequences.fasta (Text S4); Search Database:
NR protein database (downloaded from NCBI)).
doi:10.1371/journal.pone.0101144.t006

Table 7. Turnaround time computed using NCBI BLAST+ and mpiBLAST on SMP server.

Program used
NCBI blastx command line
execution; no. of threads = 48

mpiBLAST through WImpiBLAST;
no. of cores = 48

Turnaround time 4.17 hours 3.55 hours

The readings show that on the same SMP server and a similar number of cores i.e. 48, mpiBLAST outperform NCBI BLAST+ by roughly 1.2 times. (Number of sequences in
fasta file = 1000; Type: Nucleotide; No. of aligned Sequences = 1; Both NCBI BLAST+ and mpiBLAST executed on SMP server; Query sequences file: ss3_Table_7_Sequences.fasta
(Text S4); Search Database: NR protein database (downloaded from NCBI)).
doi:10.1371/journal.pone.0101144.t007

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 12 June 2014 | Volume 9 | Issue 6 | e101144

http://wimpiblast.nabi.res.in
http://code.google.com/p/wimpiblast/

Platform: Linux

Programming Language: Java

Framework: Struts-1.3.0

Other Requirements: Apache-tomcat-7.x.x (www.tomcat.

apache.org) and Torque resource manager (www.

adaptivecomputing.com).

Supporting Information

Table S1 Database and program related information as used

during the use case tests.

(DOCX)

Table S2 System specific information used in Experiment.

(DOCX)

Text S1 User Manual.

(PDF)

Text S2 Installation Manual.

(PDF)

Text S3 Quick Start Guide.

(PDF)

Text S4 Hyperlinks to fasta file containing sequences used in use

case runs.

(DOCX)

Acknowledgments

We would like to thank Executive Director, NABI and Dr. Rakesh Tuli for

encouragement and advice during development of WImpiBLAST

interface. We also thank Abhishek Das and Sucheta Pawar, Senior

Technical Officers, High Performance Computing Solutions Group, C-

DAC Pune for initial discussion during requirement analysis and designing

phase. Technical networking assistance from Sukhjinder Singh, NABI is

greatly appreciated. Suggestions from Dr. Vasilis J Promponas during the

peer review of this manuscript have improved the user friendliness of

interface. Suggestions from Drs. Fotis Georgatos and anonymous reviewers

have substantially improved the readability of the manuscript.

Author Contributions

Conceived and designed the experiments: SM. Performed the experiments:

SM PS. Analyzed the data: SM PS. Contributed reagents/materials/

analysis tools: SM PS. Wrote the paper: SM PS. Developed architecture

and source code: PS. Tested and improved the WImpiBLAST interface:

SM PS. Approved the final manuscript: SM PS.

References

1. Altschul SF, Gish W, Miller W, Myers EW, Lipmanl DJ (1990) Basic Local
Alignment Search Tool. Journal of Molecular Biology 215: 403–410.

2. Gotoh O, Tagashira Y (1986) Sequence search on a supercomputer. Nucleic

Acids Research 14: 57–64. Available: http://nar.oxfordjournals.org/content/
14/1/57.short. Accessed 9 January 2014.

3. Coulson AFW, Collins JF, Lyall A (1987) Protein and nucleic acid sequence
database searching: a suitable case for parallel processing. The Computer

Journal 30: 420–424.
4. Darling AE, Carey L, Feng W (2003) The Design, Implementation, and

Evaluation of mpiBLAST. Proceedings of ClusterWorld 2003: 13–15.

5. Lin H, Balaji P, Poole R, Sosa C, Ma X, et al. (2008) Massively Parallel
Genomic Sequence Search on the Blue Gene/P Architecture. High Perfor-

mance Computing, Networking, Storage and Analysis, 2008 SC 2008
International Conference for IEEE.

6. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, et al. (2008)

NCBI BLAST: a better web interface. Nucleic acids research 36: W5–9.
A v a i l a b l e : h t t p : / /w w w . p ub m e dc e n t r a l . n i h . g o v/ a r t i c l e r e nd e r .

fcgi?artid = 2447716&tool = pmcentrez&rendertype = abstract. Accessed 3 Jan-
uary 2014.

7. Tao T (n.d.) wwwblast: Setup and Usage. Available: http://www.ncbi.nlm.nih.
gov/staff/tao/URLAPI/wwwblast/.

8. Priyam A, Woodcroft B J, Wurm Y (n.d.) SequenceServer: BLAST searching

made easy. Available: www.sequenceserver.com.
9. Rekapalli B, Giblock P, Reardon C (2013) PoPLAR: Portal for Petascale

Lifescience Applications and Research. BMC Bioinformatics 35 (suppl 2), W71–
W74. Available: http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid = 3698029&tool = pmcentrez&rendertype = abstract. Accessed 9 Jan-

uary 2014.
10. Hunter AA, Macgregor AB, Szabo TO, Wellington CA, Bellgard MI (2012)

Yabi: An online research environment for grid, high performance and cloud
computing. Source Code for Biology and Medicine: 7(1), 1. Available: http://

www.scfbm.org/content/7/1/1.
11. Lim A, Zhang L (1999) WebPHYLIP: a web interface to PHYLIP.

Bioinformatics: 15(12), 1068–1069.

12. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, et al. (2008) The
metagenomics RAST server - a public resource for the automatic phylogenetic

and functional analysis of metagenomes. BMC Bioinformatics 9: 386. Available:
h t t p : / / w w w . p u b m e d c e n t r a l . n i h . g o v / a r t i c l e r e n d e r .

fcgi?artid = 2563014&tool = pmcentrez&rendertype = abstract. Accessed 12 De-
cember 2013.

13. Letondal C (2001) A Web interface generator for molecular biology programs in

Unix. Bioinformatics 17: 73–82.
14. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, et al. (2007)

Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research 35:
W71–4. Available: http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid = 1933133&tool = pmcentrez&rendertype = abstract. Accessed 6 Jan-
uary 2014.

15. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, et al. (2013)

BLAST: a more efficient report with usability improvements. Nucleic acids
research 41: W29–33. Available: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid = 3692093&tool = pmcentrez&rendertype = abstract. Ac-
cessed 24 December 2013.

16. Misra G, Agrawal S, Kurkure N, Pawar S, Mathur K (2011) CHReME: A Web

Based Application Execution Tool for using HPC Resources. International
Conference on High Performance Computing (HPC-UA 2011) Proceedings

2011: 12–14.
17. Yang CT, Han TF, Kan HC (2009) G-BLAST: a Grid based solution for

mpiBLAST on computational Grids. Concurrency and Computation: Practice
and Experience 212 (2009): 225–255.

18. Vouzis PD, Sahinidis NV (2011) GPU-BLAST: using graphics processors to

accelerate protein sequence alignment. Bioinformatics (Oxford, England) 27:
182–188. Available: http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid = 3018811&tool = pmcentrez&rendertype = abstract. Accessed 9 April
2014.

19. Papadopoulos A, Kirmitzoglou I, Promponas VJ, Theocharides T (2013) FPGA-

based hardware acceleration for local complexity analysis of massive genomic
data. Integration, the VLSI Journal 46: 230–239. Available: http://linkinghub.

elsevier.com/retrieve/pii/S0167926012000697. Accessed 11 April 2014.
20. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST.

Bioinformatics (Oxford, England) 26: 2460–2461. Available: http://www.ncbi.
nlm.nih.gov/pubmed/20709691. Accessed 19 March 2014.

21. Matsunaga A, Tsugawa M, Fortes J (2008) CloudBLAST: Combining

MapReduce and Virtualization on Distributed Resources for Bioinformatics
Applications. 2008 IEEE Fourth International Conference on eScience: 222–

229. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber = 4736761. Accessed 25 March 2014.

WImpiBLAST: Web Interface for mpiBLAST

PLOS ONE | www.plosone.org 13 June 2014 | Volume 9 | Issue 6 | e101144

www.tomcat.apache.org
www.tomcat.apache.org
www.adaptivecomputing.com
www.adaptivecomputing.com
http://nar.oxfordjournals.org/content/14/1/57.short
http://nar.oxfordjournals.org/content/14/1/57.short
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2447716&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2447716&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/wwwblast/
http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/wwwblast/
www.sequenceserver.com
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3698029&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3698029&tool=pmcentrez&rendertype=abstract
http://www.scfbm.org/content/7/1/1
http://www.scfbm.org/content/7/1/1
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2563014&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2563014&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1933133&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1933133&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3692093&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3692093&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3018811&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3018811&tool=pmcentrez&rendertype=abstract
http://linkinghub.elsevier.com/retrieve/pii/S0167926012000697
http://linkinghub.elsevier.com/retrieve/pii/S0167926012000697
http://www.ncbi.nlm.nih.gov/pubmed/20709691
http://www.ncbi.nlm.nih.gov/pubmed/20709691
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4736761
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4736761

