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Summary
Cellular transport of ions, especially by ion channels, regulates physiological func-
tion. The transient receptor potential (TRP) channels, with 30 identified so far, are
cation channels with high calcium permeability. These ion channels are present in
metabolically active tissues including adipose tissue, liver, gastrointestinal tract,
brain (hypothalamus), pancreas and skeletal muscle, which suggests a potential role
in metabolic disorders including obesity. TRP channels have potentially important
roles in adipogenesis, obesity development and its prevention and therapy because
of their physiological properties including calcium permeability, thermosensation
and taste perception, involvement in cell metabolic signalling and hormone release.
This wide range of actions means that organ-specific actions are unlikely, thus in-
creasing the possibility of adverse effects. Delineation of responses to TRP channels
has been limited by the poor selectivity of available agonists and antagonists. Food
constituents that can modulate TRP channels are of interest in controlling meta-
bolic status. TRP vanilloid 1 channels modulated by capsaicin have been the most
studied, suggesting that this may be the first target for effective pharmacological
modulation in obesity. This review shows that most of the TRP channels are poten-
tial targets to reduce metabolic disorders through a range of mechanisms.

Keywords: adipocytes, energy expenditure, obesity, transient receptor potential
channel.

Abbreviations: BAT, brown adipose tissue; CGRP, calcitonin gene-related peptide;
GLP-1, glucagon-like peptide 1; POMC, proopiomelanocortin; TRP, transient re-
ceptor potential; WAT, white adipose tissue; thermo-TRP, thermosensitive TRP
channels.

Introduction

Obesity has become an important health concern world-
wide. Analysis of data from 188 countries between 1990
and 2013 showed that nearly 30% of the world’s popula-
tion or 2.1 billion people were either obese or overweight
(1). During this period, the rise in rate of obesity and
overweight has been substantial for both men, from
28.8% to 36.9%, and women, from 29.8% to 38%. More-
over, the nearly 47% increase in prevalence in children and
adolescents of overweight or obesity during this period

indicates that obesity will continue as a cause of ill-health
for many decades to come (1). The overall burden of
healthcare costs for obesity and its related complications
will continue to increase, as complications are life-
threatening, such as cardiovascular complications, insulin
resistance and type-2 diabetes, dyslipidaemia, cancer, osteo-
arthritis and chronic kidney disease (2–5). The most impor-
tant causal factor of obesity is an imbalance in energy intake
and energy expenditure, with energy-dense diets playing a
major role in this imbalance. Insufficient physical activity
and sleep, endocrine disruption, altered thermoneutrality,
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smoking cessation, use of antipsychotic drugs, pregnancy in
later stage, genetic and epigenetic risk factors are some of
the changes that increase the storage of excess energy by
the body (6).

Bariatric surgery, including gastric bypass surgery,
laparoscopic adjustable gastric banding, biliopancreatic
diversion with duodenal switch and gastric sleeve, is the
most effective treatment option for obesity, but it is highly
invasive and often associated with major post-operative
complications (7,8). Over the years, many anti-obesity
medications have been developed for the management of
obesity, but most have been withdrawn (9). These medica-
tions reduce or control weight by affecting one or more of
the fundamental physiological processes of hunger and
satiety by controlling neuronal and hormonal signals.
Because these processes are essential for growth and
development, these medications contain the potential for
adverse effects, including cardiovascular and neurological
complications (10–17). There are many anti-obesity medi-
cations in the drug development pipeline, with the most
promising drugs being co-agonists for multiple gut
hormones including glucagon-like peptide 1 (GLP-1),
glucagon and gastric inhibitory peptide (18). The GLP-1
analogue, liraglutide, has shown its anti-obesity effects in
many clinical trials (15,19,20), but it needs to be injected
subcutaneously daily and is very expensive (21). There is
a long way to go before we will be able to establish
efficacy and safety with chronic therapy with these novel
agents (22). The experience with anti-obesity drugs has
produced well-founded cynicism about new drugs. Given
the rapid development and major risks of the current
obesity epidemic, how long can we wait for effective and
safe treatments?

The marked increase in prevalence of obesity and over-
weight across all countries, genders and age groups accom-
panied by the withdrawal of pharmaceutical therapeutics
for obesity has encouraged researchers to look at different
therapeutic targets for tolerable, easy to administer and
more effective alternatives to manage obesity as a chronic
disease. The transient receptor potential (TRP) family is a
potential candidate to regulate energy homeostasis as these
channels are major contributors to many physiological
conditions associated with energy balance, gut hormone
release, adipokine secretion, gut-brain axis modulation
and glucose homeostasis. The present review summarises
the functional role of TRP channels and food constituents
modulating these channels in obesity.

Transient receptor potential family

More than 30 mammalian TRP channels have been cloned
and characterised (23,24). These are classified by their
sequence homology, rather than by ligand function or ion
selectivity as with other ion channels, into seven subfamilies

of TRP channels in mammals – TRPC (canonical), TRPV
(vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP
(polycystin), TRPML (mucolipin) and TRPN (Drosophila
no mechanoreceptor potential C). In yeast, an eighth TRP
family, TRPY (yeast), has been identified (23). There are
many highly non-specific blockers of TRP channels with
relatively few selective agonists such as capsaicin on TRPV1
channels, making the correlation of receptors and responses
much more difficult (24). TRP channels are expressed in
neuronal and non-neuronal tissues and are critical for
physiological functions such as senses (vision, taste percep-
tion, hearing, olfaction, nociception, mechanosensation
and thermosensation), homeostasis (absorption and
reabsorption of ions and fluid flow) and cell survival and
growth (25–28). Additionally, the presence of these chan-
nels in tissues such as the hypothalamus, adipocytes, liver,
intestine and pancreas that influence energy intake, storage
and expenditure together with evidence from various
in vitro and in vivo (diet-induced obesity and knockout)
studies suggested the role of TRP channels in regulating
energy homeostasis (29–32). Three important characteris-
tics of TRP channels, calcium permeability, thermosensation
and mechanosensation, together with the modulation of
these channels by dietary constituents, make them an
attractive target for regulation of metabolic function and
energy uptake.

Calcium permeability

Most of the TRP channels are located at the plasma
membrane with high permeability to calcium, a versatile
signalling molecule regulating many cellular processes
(27). Calcium has been implicated as a critical mediator in
cellular mechanisms associated with obesity, in general,
and adipogenesis, in particular (33). Using Drosophila as a
model organism, calcium signalling influences lipid storage
and lysis in cells (34–37). The role of calcium is biphasic,
with an acute increase inducing lipolysis in adipocytes but
a chronic increase inhibiting lipolysis (38,39). In vitro
studies showed that elevated calcium concentrations
inhibited differentiation markers and lipid accumulation
in murine 3T3-L1 pre-adipocytes and human adipocytes
via G-protein-coupled mechanisms mediated by a novel
calcium sensor or receptor (40–43). Calcium-dependent
molecular activity mediated by calcineurin, a calcium-
dependent serine-threonine phosphatase, and calreticulin
may inhibit adipocyte differentiation (44,45). Further-
more, increasing cytosolic calcium affects multiple tran-
scription factors regulating hormonal and non-hormonal
activities responsible for adipocyte differentiation, func-
tions such as adipokine release and thermogenic ability,
and survival (46–49). Increasing extracellular calcium
decreases brown adipose tissue (BAT) differentiation and
thermogenic ability (50). Also, intracellular calcium ions
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modulate insulin and leptin signalling in adipocytes
(51,52). Considering the importance of calcium in adipo-
cyte biology, it is essential to unravel the function of
TRP channels as the most significant calcium-permeable
channels in adipocytes (33).

Pancreatic islets produce insulin in β-cells and glucagon in
α-cells, with these two important hormones having opposite
effects on plasma glucose concentrations and hence
regulation of metabolism. Molecular and physiological
in vivo and cell-based studies have shown the presence of
voltage-gated calcium channels with β-cells containing
dihydropyridine-sensitive Ca2+-channels, SNX482-sensitive
R-type Ca2+-channels, P/Q type Ca2+-channels, L-type
Ca2+-channels containing α1C (Cav1.2) and α1D
(Cav1.3) pore-forming subunits and T-type Ca2+-channels
while α-cells contain T-type Ca2+-channels, L- (80%) and
N-type HVA Ca2+-channels (53–56). These studies have
also defined the role of intracellular calcium in insulin
and glucagon release (57,58). Increased glucose concentra-
tions lead to a concentration-dependent reduction in KATP-
channel activity followed by depolarisation and action
potential firing. The action potentials involve activation
of voltage-gated L-type Ca2+-channels and other Ca2+-entry
pathways leading to stimulation of Ca2+-dependent exocyto-
sis of the insulin-containing secretory granules, hence insulin
secretion (59–61). Glucose-mediated amplifying effects on
secretory granules require calcium to release insulin and
glucagon in pancreatic islets (61–63).

Mammalian skeletal muscle is central to energy metabo-
lism through its response to many factors including growth
and differentiation factors, hormones, nerve signals and
exercise (64,65). All muscle fibre use calcium as their main
regulatory (contraction and relaxation) and signalling
(regulation of protein metabolism, differentiation and
growth) molecule. The calcium cycle in skeletal muscle
includes the ryanodine receptor (the sarcoplasmic reticular
Ca2+-release channel), the troponin protein complex, the
Ca2+-pump for sarcoplasmic reticulum re-uptake of cal-
cium, and calsequestrin, the Ca2+-storage protein (66–68).
There are many other proteins present in muscle tissues
such as parvalbumin, calmodulin, S100 proteins, annexins,
sorcin, myosin light chains, β-actinin, calcineurin and
calpain that regulate or modulate the calcium-dependent
muscle contractile activity (69). Exercise-induced increases
in skeletal muscle activity and release of specific hormones
are associated with energy regulation and expenditure
(70). Skeletal muscle, unlike other cell types, contains
unique voltage-gated calcium channels, which on opening
do not increase intracellular calcium but instead initiate
the opening of ryanodine receptors allowing calcium entry
to the sarcoplasmic reticulum (71). Cytosolic Ca2+ and its
related mediators, channels and pathways are the major
mediators of glucose uptake in skeletal muscles. Calcium
signalling serves as a major mediator of muscle function.

Increased cytosolic calcium and muscle contraction increase
the mitochondrial biogenesis, mitochondrial energy expen-
diture, GLUT4 expression in muscles and glucose uptake
(72–75). Although voltage-gated calcium channels are the
major calcium channels present in skeletal muscles, multiple
TRP channels are also present. Understanding the control of
these calcium-permeable TRP channels during energy regu-
lation is important as calcium plays such an important role
in adipocyte biology, insulin and glucagon release and skele-
tal muscle activity.

Thermosensitive transient receptor potential
channels

There are 11 thermosensitive TRP channels (thermo-TRP)
so far identified in mammals (31). These channels, members
of TRPV, TRPM, TRPA and TRPC subfamilies, have tem-
perature thresholds for activation in physiological ranges
(Fig. 1). TRPV1 (>42°C) and TRPV2 (>52°C) are activated
by heat; TRPV3 (>32°C), TRPV4 (>27–41°C), TRPM2
(>36°C), TRPM4 (15–35°C) and TRPM5 (15–35°C) are
activated around mammalian body temperature while
TRPM8 (<27°C) and TRPA1 (<17°C) are sensors of lower
temperature (31). TRPM3 (40°C) and TRPC5 (<35–25°C)
are included as thermo-TRPs as they sense warm and cold
temperatures, respectively (76,77). Some of these thermo-
TRP channels are expressed in sensory neurons and skin,
making them crucial to detect links between environmental
temperatures and metabolism (31).
Apart from food habits and physical activity, habitat

environmental temperature plays an important role in
mammalian energy balance. In thermo-neutral ambient
conditions, the human body requires minimal heat produc-
tion from available energy sources to achieve core body
temperature. Altered habitat temperature, above or below
the thermo-neutral temperature, can enhance resting energy
expenditure (78). Decreased resting energy expenditure in
thermo-neutral indoor housing may be one of the
contributing factors in the development of obesity (79).
Cold is a natural stimulus for adaptive thermogenesis and
resultant energy expenditure (80,81). An increased energy
expenditure of 105 to 156 kJ d�1/1°C is required to main-
tain core body temperature in ambient temperature below
thermo-neutral temperature (79,82). In the pioneering
studies on cold-induced resting energy expenditure,
ambient temperatures below 16.2°C increased the resting
energy expenditure by 36% as compared with thermo-
neutral ambient temperature in terms of CO2 production
(83). The detection of thermal stimuli occurs with the help
of neuronal cells located in the dorsal root ganglia and
cranial nerve ganglia. Axons of these sensory neurons
travel through the peripheral sites of skin and terminate
as a free nerve terminal to detect the stimuli and relay this
information to the spinal cord (84). Many mechanisms and

TRP channels in obesity M. Bishnoi et al. 1271obesity reviews

© 2018 World Obesity Federation Obesity Reviews 19, 1269–1292, September 2018



receptors are thought to be responsible for thermosensation
at the free nerve terminals present at different thermo-
sensory locations, of which TRP ion channels are the most
important (Fig. 1) (84).

Other endogenous and environmental stimuli also modu-
late thermo-TRP channels. TRP channels sensed oxygen
concentrations in hypoxia (TRPA1, TRPM2, TRPM7,
TRPC1, TRPC3, TRPC6, TRPV1 and TRPV4) while
TRPA1 channels also directly sensed oxygen concentrations
in hyperoxia (85,86). TRPM7, TRPA1 and TRPV1 channels
were also activated by reactive oxygen species (87,88), and
TRPA1 channels were also activated by UV light (89). TRP
channels can also be activated by mechanostimulation.
TRPC1 channel activation was achieved by applying pres-
sure (90), while TRPM7 and TRPM4 channels were sensi-
tive to membrane stretch (91–93). TRPV2 and TRPC6
were activated by changes in osmotic pressure (94–96).

Modulation of transient receptor potential channels
by natural compounds and dietary constituents

Transient receptor potential channels are modulated by
food and dietary constituents, making them a viable option
for developing individual food-based strategies to prevent
obesity. However, the concept that dietary constituents will
reduce obesity remains intuitive and possible rather than
proven (97). The development of personalised nutrition
with analysis and monitoring of dietary habits, food

behaviour and physical activity and exercise, including
nutrigenomics, metabolomics and microbiota profiling,
may be successful in implementing innovative precision nu-
trition approaches to metabolic syndrome (98). The diffi-
culty in complying with long-term personalised nutrition,
including consuming sufficient amounts of effective dietary
constituents, suggests that improved approaches to diet-
based treatments for obesity are needed. TRP channels
modulated by compounds available in foods include
TRPV1 (capsaicin from chillies, piperine from black pepper,
gingerol from ginger, eugenol from clove and capsinoids),
TRPA1 (cinnamaldehyde from cinnamon, allicin from garlic
and onion, allyl isothiocyanate from wasabi and
phenylethyl isothiocyanate from brussels sprouts), TRPV2
(Δ9-tetrahydro-cannabinol and cannabinol from cannabis),
TRPM8 (menthone and menthol from mint, eucalyptol
from essential oils from Eucalyptus polybractea, geraniol
from lemongrass and aromatic herb oils, L-carvone from
spearmint or Kuromoji oil and hydroxyl-citronellal from
citronella oils, volatile oils such as lemon, lemongrass or
melissa oils), TRPM5 (steviol glycosides from stevia),
TRPV3 (thymol from thyme and carvacrol from clove),
TRPC6 (hyperforin from St John’s Wort) and TRPC1/5
(omega-3 polyunsaturated fatty acids such as α-linolenic
acid, docosahexaenoic acid and eicosapentaenoic acid)
(33,99–101). This leads to the hypothesis that TRP
channel-mediated responses to these natural products or
foods can improve metabolism.

Figure 1 Thermo-TRP channels and their activation temperatures. TRP, transient receptor potential; TRPA, TRP ankyrin; TRPM, TRP melastatin; TRPV,
TRP vanilloid. [Colour figure can be viewed at wileyonlinelibrary.com]
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Involvement of different transient receptor
potential channels in obesity

Transient receptor potential vanilloid 1 channels

Transient receptor potential vanilloid 1, the most studied
receptor of the TRP channel family, is a homotetrameric
non-selective cation channel with high permeability to
calcium ions (102), where the central pore, formed by a
hydrophobic section between the fifth and sixth transmem-
brane domains (S5–S6), is surrounded by four subunits and
a pore-loop flanked by S1–S4 transmembrane domains
(103,104). This channel is primarily expressed in a popula-
tion of sensory neurons, and its involvement in different
modalities of pain has been extensively studied and
reviewed (102,105,106). It is activated by numerous
chemicals including capsaicin, piperine and endogenous
lipids including anandamide and by physical stimuli such
as low pH and temperatures above 42°C (101,107–109).
It is also expressed in other neuronal and non-neuronal
tissues, which suggests its functional role in many intercellu-
lar and extracellular physiological processes and regulatory
mechanisms (110–113).

Transient receptor potential vanilloid 1 channels are
present in 3T3-L1 pre-adipocytes and adipocytes and in
both human and murine visceral adipose tissue (114). The
expression of TRPV1 channels was higher in pre-adipocytes
and lower in adipocytes during adipocyte differentiation
using calcium influx assays. TRPV1 expression was
decreased in visceral adipose tissue from obese, db/db and
ob/ob mice, and from human males with obesity (114).
Selective silencing of TRPV1 using specific RNA interference
reduced the actions of capsaicin both on calcium influx and
inhibition of adipogenesis in 3T3-L1 adipocytes (114). In
3T3-L1 preadipocytes and adipocytes, lower-dose capsaicin
decreased expression of PPAR-γ, C/EBP-α and leptin, in-
duced apoptosis (115), inhibited adipogenesis, induced
anti-adipogenic genes and promoted brite phenotype by a
TRPV1-dependent mechanism (116). At higher doses,
capsaicin promoted adipogenesis associated with decreased
expression of anti-adipogenic and BAT-specific genes (116).
Further, higher-dose capsaicin decreased inflammatory
marker production in adipocytes (116).

Capsaicin induced anti-obesity responses through differ-
ent TRPV1-dependent mechanisms including inhibition of
adipogenesis, browning of white adipose tissue (WAT), acti-
vation of BAT and alteration of hypothalamic gene expres-
sion (117). The anti-obesity effects of capsaicin relate to its
actions on TRPV1 channels as diet-induced obesity was
prevented in wild-type mice by capsaicin but not in
TRPV1-knockout mice (114). Oral capsaicin prevented
obesity-induced glucose intolerance in high-fat diet-fed
C57BL/6 obese mice by suppressing inflammation and
enhancing fatty acid oxidation (lipolysis) in adipose tissue

and liver (118). Oral administration of capsaicin
(2 mg kg�1 d�1 for 12 weeks) modulated hypothalamic
satiety-associated genotype, induced browning genotype
(BAT-associated genes) in subcutaneous WAT and increased
expression of genes related to thermogenesis and mitochon-
drial biogenesis in BAT (117). TRPV1 activation by capsai-
cin promoted lipolysis and improved visceral fat
remodelling in both mice and humans through Cx43-
mediated increase in extracellular Ca2+ influx (119). In
TRPV1 knockout mice, TRPV1 channels played a major
role in hypothalamic leptin activity and glucose homeostasis
because of altered STAT-3 activity (120). Capsaicin trig-
gered browning of WAT by promoting sirtuin-1 expres-
sion and activity through TRPV1-dependent mechanisms
such as enhanced intracellular Ca2+ concentrations and
phosphorylation of Ca2+/calmodulin-activated protein ki-
nase II and AMP-activated protein kinase (121). Capsaicin
activation of TRPV1 in BAT enhanced the expression of
SIRT1, which facilitated deacetylation and interaction of
PPAR-γ and PRDM-16, hence inducing BAT activation
(122). In humans, capsaicin prevented weight gain and
maintenance by an increase in resting energy expenditure
and fat oxidation (123–125). Meta-analyses of human
studies have identified capsaicin as an anti-obesity agent
(126,127).
Capsaicin’s pungency may limit its clinical use in food.

A potential alternative to capsaicin is the use of
capsinoids, the non-pungent capsaicin analogues that are
equally potent at enhancing thermogenesis, promoting
brite adipocyte biogenesis, fat oxidation and lipolysis,
sympathetic nerve activity and weight reduction in both
rodents and humans (126,128–138). Capsinoids act
synergistically with cold temperature and additively with
exercise to enhance energy expenditure, brite adipocyte
biogenesis and activity (135,136). Capsinoids enhanced
energy expenditure in wild-type mice but not in TRPV1
knockout mice or chemical TRPV1 blockade, suggesting
the involvement of gastrointestinal TRPV1 (129,139). The
gastrointestinal TRPV1/sympathetic nervous system/β2-
adrenoceptor axis has been proposed as a novel approach
to biogenesis of brite adipocytes using fish oil and capsinoids
(136,140,141). The capsinoid, dihydrocapsiate, is found in a
few plant species at typically low abundance but can be
synthesised (142). In mice, dihydrocapsiate (0.1 % in food)
prevented diet-induced increase in weight gain (143).
Another capsaicin analogue, nonivamide, showed weight
gain prevention and increased peripheral serotonin release
in humans with moderate overweight (144,145). Also,
in vitro conditions using different cell lines (3T3-L1, Caco-
2 and SH-SY5Y cells) have shown that nonivamide
inhibited adipogenesis and enhanced energy expenditure
ability (146–148). However, clinical trials studying
dihydrocapsiate supplementation produced less convincing
results than rodent studies (149,150). Chemically
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synthesised dihydrocapsiate received GRAS status from the
US-FDA (151).

Other dietary constituents showed TRPV1-dependent
anti-obesity effects. 6-Paradol from ginger increased energy
metabolism in BAT and increased expression of UCP1 by
the activation of sympathetic nerve activity (143). KetoA
[10-oxo-12(Z)-octadecenoic acid], a linoleic acid metabo-
lite, is produced by gut lactic acid bacteria and hence can
provide an important link for gut-brain axis in metabolism
and energy regulation (152). KetoA activated TRPV1 using
calcium imaging and whole patch clamp methods and en-
hanced adrenaline turnover in adipose tissues (152). Dietary
intake of KetoA enhanced energy expenditure (browning) in
normal mice, thereby protecting mice from diet-induced
obesity, but not in TRPV1-deficient mice (152). Oleuropein,
an agonist of both TRPV1 and TRPA1, enhanced UCP1
expression in BAT with a concomitant decrease in the
visceral fat mass of high-fat diet-fed obese rats through
enhanced noradrenaline secretion via β-adrenergic action
following TRPA1 and TRPV1 activation (153).

Body-weight gain increased colonisation of harmful
bacterial populations and increased lipopolysaccharide
production (metabolic endotoxaemia) (154,155). The anti-
obesity effect of capsaicin may involve an improved gut
microbiota in rodents and humans fed with high-fat diet.
Capsaicin increased the Firmicutes/Bacteroidetes ratio
(156,157), decreased Proteobacteria (158), increased
Faecalibacterium abundance (157), increased Akkermansia
muciniphila, a mucin-degrading bacterium (158), increased
butyrate-producing Ruminococcaceae and Lachnospiraceae
(159), decreased the lipopolysaccharide-producing family
S24_7 (159), increased Roseburia (156), decreased
Bacteroides and Parabacteroides (156) and increased
health-promoting gut bacteria including Lactobacillus sp.,
Bifidobacteria sp. and Akkermensia muciniphila (117).
Predicted function analysis showed depletion of genes in-
volved in bacterial lipopolysaccharide synthesis in response
to capsaicin, hence countering metabolic endotoxaemia
(159). Capsaicin directly upregulated expression of mucin
2 gene (Muc2) and antimicrobial protein gene, Reg3g, in
the intestine (158). In germ-free mice, faecal microbiota
transplantation experiments demonstrated that dietary
capsaicin-induced protection against high-fat diet-induced
obesity is transferrable (159). In humans, dietary
capsaicin-induced gut beneficial effects were only seen in
Bacteroides enterotype and not in Prevotella enterotype
(157). Hence, the beneficial effects of dietary capsaicin on
energy homeostasis are associated with relevant alterations
in gut microbial populations. Also, the enhanced produc-
tion of L-lactate by Lactobacillus acidophilus in the pres-
ence of red chili or capsaicin is due to increased metabolic
activity (160), which suggests that capsaicin enhanced fer-
mentation activity of bacteria. There is a high likelihood
of a direct link between capsaicin actions on gut microbiota

and TRPV1 expression and function in the gastrointestinal
tract, given the sensory nature of TRPV1 and increased
crosstalk between gut and brain, but this is still not proved.

Transient receptor potential vanilloid 1 is co-expressed
and co-localised with calcitonin gene-related peptide
(CGRP) and TRPV1 activation released CGRP (161,162).
CGRP induced anorexia and energy expenditure by
stimulating anorexigenic neuropeptide and/or inhibiting
orexigenic neuropeptide expression (163), yet CGRP has
been associated with development of insulin resistance
(164). CGRP also induces energy expenditure, increasing
the skin temperature and BAT tissue thermogenesis, while
CGRP-positive sensory innervations in adipose tissue con-
vey information on peripheral lipid stores to the brain to
modulate adipokine secretion (163). Male mice lacking
CGRP receptors were protected from obesity induced by
high-fat diet, and CGRP regulated the content of lipid in
liver, muscle and adipose tissue (165). Long-term use of
high-fat, high-carbohydrate diet sensitised TRPV1-
mediated vascular reactions and CGRP release, which are
relevant to the enhanced headache susceptibility of individ-
uals with obesity (166). However, the exact role and second
messenger signalling following CGRP release is still not
clear, but the TRPV1-CGRP association might play a role
in TRPV1-induced metabolic effects.

Several lines of evidence suggest TRPV1 blockade as
a therapeutic approach for weight control. TRPV1-null
mice with no functional TRPV1 signalling when fed a
high-fat diet accumulated less abdominal and subcutane-
ous fat as a result of higher thermogenic capacity com-
pared with their wild-type counterparts (167). Further,
TRPV1 desensitisation may play a critical role in the treat-
ment of obesity (30). Desensitisation of the capsaicin-sensitive
afferent abdominal fibre enhanced weight loss in rats by
attenuating hypometabolic adaptation to food deprivation
(168). Likewise, reduction in weight gain and body fat
contents have been observed in diet-induced obese rats fol-
lowing vagotomy or capsaicin-mediated deafferentiation
(169). Supporting these studies, improvement in obesity-
induced glucose tolerance, hypertension and low-grade
inflammation was observed in high-fat diet-fed TRPV1
knockout but not in high-fat diet-fed wild-type mice (170).
Further, TRPV1 knockout mice showed an extended lifespan
and better metabolic profile in old age by CRTC1/CREB
signalling (171).

Transient receptor potential vanilloid 1 agonists exert
complex pharmacological effects, initially producing activa-
tion followed by a long-lasting desensitisation suggesting
that this mechanism for inhibition of TRPV1 is important
for the chronic pharmacological effects of TRPV1 agonists
(167). TRPV1 desensitisation is important in the chronic
metabolic actions of capsaicin as a TRPV1 agonist; the log-
ical extension of this concept is that selective antagonists for
this receptor may also play an important role in control of
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metabolic activity (172). In addition, TRPV1 agonists cause
both desensitisation and ablation of the neurons expressing
TRPV1, thus producing higher efficacy. However, antago-
nists only block TRPV1 sensitisation of neuronal excitation
(172). Three methods for chronically decreased TRPV1 re-
sponses have been suggested – selective disruption of the
TRPV1 gene, destruction of sensory neurons that express
TRPV1 and pharmacological activation/desensitisation of
TRPV1 (167). We have listed the different mechanisms of
actions for TRPV1 agonists (agonism or desensitisation)
and antagonists in Table 1.

Transient receptor potential vanilloid 2 channels

Transient receptor potential vanilloid 2, a non-selective
calcium-permeable cation channel, cloned as an analogue
of TRPV1, is activated by noxious heat with an activation
threshold >52°C, as well as by mechanical stimuli and
many endogenous lipid mediators (186). It is present in neu-
ronal and non-neuronal cell types and is involved in many

physiological functions (186). TRPV2 was abundantly
expressed in pre-adipocytes (187,188), differentiated adipo-
cytes (188) and both murine brown andWAT (189). TRPV2
mRNA expression levels in BAT and subcutaneous WAT
were increased in high-fat diet-induced obese mice and db/
db mice (190). Moreover, the expression of TRPV2 was
increased in differentiated brown adipocytes compared
with pre-adipocytes at mRNA, protein and functional
levels (191).
Two reports in 2016 established the novel role of TRPV2

in BAT differentiation, browning-induced thermogenesis
and enhanced energy expenditure (191,192). The expres-
sion of thermogenic genes, UCP1 and PGC1-α, was lower
in brown adipocytes isolated from TRPV2 knockout mice
compared with wild-type mice (191). TRPV2 activation
was associated with inhibition of BAT differentiation
whereas its knockdown facilitated differentiation (191).
Further, BAT activation-induced thermogenesis and brite
phenotype were increased by TRPV2-mediated calcium in-
flux (192). TRPV2 knockout mice were prone to obesity

Table 1 Summary of TRPV1-modulating different mechanisms (agonism, antagonism, knockout and desensitisation)

Modulation Mechanism Effects Comments

Capsaicin (agonist) Sensory TRPV1 agonism Energy expenditure, appetite suppressive effect (173) Effective in capsaicin non-user humans
Increased respiratory quotient (173) Orally consumed capsaicin but not from

capsaicin capsules in humans
TRPV1 agonism Carbohydrate oxidation and increased plasma

adrenaline and noradrenaline (174)
Long distance male runners

Increased energy expenditure and increased
plasma adrenaline and noradrenaline (175)

Humans

TRPV1 knockout TRPV1 knockout High locomotor activity while young but become
hypoactive upon ageing for 61 weeks, weight was
lower while young but become obese upon
ageing for 61 weeks (176)

TRPV1 knockout mice

Reduced locomotor activity, more leptin-resistant
and insulin-resistant (120)

TRPV1 knockout mice fed
with high-fat diet

Gained less weight as compared with wild type in
11% fat diet (167)

TRPV1 knockout mice

Capsaicin (agonist) TRPV1 desensitisation Impaired exercise endurance in treadmill
running (177)

Neonatal capsaicin deafferentation
in Sprague Dawley rats

Impairment in the elevation of plasma
adrenaline and noradrenaline after
exercise due to depletion of
substance P in C-fibers (178)

Neonatal capsaicin-treated Sprague
Dawley rats

Prevented the development of spontaneous
hyperglycaemia (179)

Zucker diabetic fatty rats

Improves oral glucose tolerance (180) Obese Zucker rats
Increases in vivo insulin sensitivity, skeletal muscle
glycogen synthesis, reduction of glucagon,
corticosterone, adrenaline and noradrenaline
hormones in plasma (181)

Rats

Resiniferatoxin (agonist) TRPV1 desensitisation Improves glucose tolerance and increases
insulin secretion (182)

Zucker diabetic fatty rats

Improves insulin sensitivity (183) Male obese Zucker rats
BCTC (antagonist) TRPV1 antagonist Decreased hyperglycaemia, hypertriglyceridaemia,

enhanced glucose clearance in OGTT
and insulin secretion (184)

Hyperinsulinaemic ob/ob mice

AZV1 (antagonist) Enhanced insulin sensitivity (185) ob/ob mice
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and showed insulin resistance after high-fat diet administra-
tion (192). Hence, these two studies from the same group
have contradictory results with one suggesting TRPV2 to
be responsible for inhibition of BAT differentiation and the
other one suggesting TRPV2 to be involved in thermogene-
sis through BAT activation (191,192). A possible explana-
tion is that TRPV2 has different mechanisms of action at
different stages of adipocyte differentiation where it may in-
hibit differentiation of BAT at initial stages and promote it
at later stages. Probenecid (TRPV2 agonist), 2-aminoetho-
xydiphenyl borate (TRPV1-3 agonist) and an increase in
extracellular temperature from 25 to 42°C caused TRPV2-
dependent increases in intracellular calcium in adipocytes
(187,188). This was blocked by ruthenium red, a non-
selective antagonist. Further, silencing of TRPV2 inhibited
cyclin D1, cyclin E and p-ERK1/2 and decreased adipocyte
cell proliferation by reducing p-Akt kinase (187). These
results suggest that activation of TRPV2 could be an
intriguing therapeutic approach for the treatment and
prevention of obesity in humans.

Transient receptor potential vanilloid 3 channels

Transient receptor potential vanilloid 3 channels, highly ho-
mologous to TRPV1, have a calcium/sodium permeability
ratio of ∼10 and are expressed in skin and hair follicles
(193). Expression of TRPV3, although lower than other
TRP channels, is found in other tissues including tongue,
brain, testis, colon and cornea (194,195). TRPV3 is also
expressed in discrete brain regions and primary sensory
afferents (193,196) including primary vagal afferents
(197,198). TRPV3 mRNA expression levels were decreased
in subcutaneous WAT and inducible BAT of high-fat diet-
induced obese, ob/ob (leptin-deficient) and db/db (leptin
receptor-deficient) mice (190,199). TRPV3 receptors were
also observed in 3T3-L1 adipocytes (199). TRPV3 is one
of the thermo-TRPs and is activated in the physiological
temperature range from 22 to 40°C (194,195). Defective
responses to innocuous and noxious heat were observed in
TRPV3 knockout mice (200). However, the TRPV3
agonists, thymol and ethyl vanillin, did not induce
thermogenesis and heat diffusion at physiological tempera-
tures (201).

High-fat diet feeding decreased the expression of
proopiomelanocortin (POMC) gene, an anorectic gene in
hypoglossal nucleus and medial nucleus tractus solitarius
of obesity-prone rats, which was positively correlated with
increase in food intake, body-weight gain, mean arterial
blood pressure and increased TRPV3 expression in these
regions (202). Infrared (heat) treatment as a stimulus for
TRPV3 reduced food intake and decreased the number of
TRPV3-positive neurons (202). Activation of TRPV3
suppressed adipocyte differentiation (199). The TRPV3
agonists, catechin and epicatechin, prevented adipogenesis

by inhibiting the phosphorylation of insulin receptor sub-
strate 1, the downstream phosphoinositide 3-kinase/Akt/
forkhead box protein O1 axis and the expression of the
adipogenic genes PPAR-γ and C/EBP-α (199). TRPV3 over-
expression limited adipogenesis in the 3T3-L1 cells (199).
Chronic treatment with TRPV3 activators prevented high-
fat diet-induced weight gain (199). Essential oils such as
carvacrol, eugenol and thymol as major components of
plants including oregano, savory, clove and thyme are
TRPV3 activators (203). The activity of these compounds,
along with novel TRPV3 agonists such as catechin and
epicatechin, which are part of our daily dietary and food
habits, allows us to hypothesise that foods containing these
compounds will reduce obesity.

Transient receptor potential vanilloid 4 channels

Transient receptor potential vanilloid 4, a close family
member of TRPV1, is a sensor of osmolarity (204,205),
temperature (206,207) and endogenous lipids (208).
TRPV4 is expressed in both excitable and non-excitable
tissues such as the kidney, lung, brain, dorsal root ganglia,
bladder, fat, testis, liver, heart, skin, airway smooth muscle
cells, vascular endothelium, chondrocytes and osteoclasts
(209–215). TRPV4 mRNA expression has been shown in
the peripheral sensory ganglia and osmoregulation-related
brain structures including lamina terminalis and hypotha-
lamic median preoptic region (204). The high expression
of TRPV4 gene in the hypothalamus, a brain area that
regulates neuronal influence on satiety and hunger, suggests
its role in energy expenditure and weight regulation. This is
supported by the expression and function of TRPV4
channels in cultured adipocytes from humans (216). TRPV4
is also present in bovine articular chondrocytes and is
regulated by obesity-driven metabolic mediators (217),
suggesting its role in crosstalk between obesity and other
complications. TRPV4, a thermo-TRP, is important for the
maintenance of core body temperature, which is a well-
known metabolic characteristic of mammals (214).

Transient receptor potential vanilloid 4-/- mice did not
show any difference in weight gain compared with wild-
type mice on normal rodent diet. However, high-fat diet
feeding in TRPV4-/- mice produced no body-weight gain
or obesity phenotype in both male and female mice (218).
Moreover, TRPV4-/- mice displayed an increased energy
expenditure including gene expression related to energy
expenditure and oxygen consumption rate, as well as
decreased serum leptin concentrations (218). The possible
reasons include that deletion or inactivation of TRPV4
induced compensatory increases in other TRP channels such
as TRPC3 and TRPC6 and elevation of calcineurin activity
increasing fuel oxidation in skeletal muscle, hence an
increase in energy expenditure and protection from diet-
induced obesity in mice (218). TRPV4-/- mice showed
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protection from diet-induced obesity and insulin resistance,
with increased browning of visceral adipose tissue by an
increase in expression of UCP1 and its downstream
mediators, PGC1-α expression, mitochondrial biogenesis
and oxidative metabolism (219). Knockdown of TRPV4
using shRNA technology resulted in an increase in total
respiration in knockdown adipocytes indicating an in-
creased capacity for energy expenditure (219). Further,
TRPV4 has a pro-inflammatory effect on adipose tissue
(219). However, in another study, TRPV4-/- mice developed
more severe diet-induced obesity (weight gain and increase
in adipocyte size) and increased knee osteoarthritis scores
after high-fat diet feeding (220). Alteration of TRPV4 pro-
tein expression after high-fat diet administration is adipose
tissue depot-selective (221). There was no difference in
epididymal adipose tissue in control and high-fat diet
groups, whereas in subcutaneous adipose tissue, high-fat
diet elevated TRPV4 protein expression (221). Irisin, an
exercise-induced myokine, induced endothelium-dependent
vasodilatation through stimulation of extracellular Ca2+

influx via TRPV4 channels in rat mesenteric arteries (222).
In children, maternal obesity is a risk factor for obesity

(223). There are limited studies on the molecular mecha-
nisms, and hence, effective preventive strategies are limited.
TRPV4 has been studied as an important molecular marker,
and selective TRPV4-based interventions can prevent long-
term adverse metabolic effects of maternal high-fat nutrition
(224). The offspring of high-fat diet-consuming mothers
showed a sixfold increase in Trpv4 mRNA expression,
which was prevented in an intervention group (lactation)
(224). Also, WAT adipokine/cytokine release and metabolic
gene/protein expression were returned to control levels in
TRPV4-based intervention groups (224). Also, in humans,
population-based TRPV4 genotyping studies suggested that
body mass index and obesity correlate with TRPV4
genotypes in Taiwanese people (225). Also, obesity status
using Asian and National Institute of Health criteria was
associated with TRPV4 genotypes (225). Overall, these
studies have demonstrated that TRPV4 could be a candidate
gene for targeting obesity in rodents as well as in humans,
deserving further evaluation if selective agonists and
antagonists can be developed.

Transient receptor potential ankyrin 1 channels

The TRPA1 channel, cloned in 1999 (226), is a molecu-
lar sensor of noxious cold temperature and also a sensor
for the irritation-causing chemicals in mustard oil, tear
gas, environmental pollutants and tobacco products
(227). TRPA1 is expressed in many tissues and cell types
(228–241). It is functionally expressed in the brain stem,
adipose tissue, sensory nerves innervating different pe-
ripheral tissues, gastrointestinal tract and pancreas
(228,234–236,242–244).

Transient receptor potential ankyrin 1 agonists such as
allyl isothiocyanate, cinnamaldehyde and methyl syringate
reduced the food intake by modulation of gastric emptying
and gut hormone secretion (245,246). This decrease in
gastric emptying was inhibited in the presence of the non-
selective TRP channel blocker (ruthenium red), tryptophan
5-hydroxylase inhibitor (p-chlorophenylalanine) or 5-HT3

receptor antagonist (granisetron) (245). The TRPA1
agonist, methyl syringate, inhibited gastric emptying and
cumulative food intake and increased anorectic gut
hormone polypeptide YY, with the effect prevented by the
non-selective TRP channel blocker, ruthenium red, or the
TRPA1 selective blocker, HC-030031, in mice (246).
High-fat diet-induced alterations in leptin and ghrelin
release were prevented by cinnamaldehyde administration
(247). The presence of TRPA1 in stomach with co-
expression of ghrelin on secretory cells of mouse and its
activation via cinnamaldehyde decreased the secretion of
ghrelin in TRPA1-dependent manner, which was blocked
by the TRPA1 antagonist, HC-030031 (243). TRPA1
channels are present in intestinal enteroendocrine L-cells,
activation of which induced TRPA1-dependent increases
in GLP-1 secretion (248). TRPA1 activation by allyl iso-
thiocyanate, carvacrol or polyunsaturated fatty acids in-
duced GLP-1 secretion in TRPA1-expressing primary
murine intestinal cultures and GLUTag, a murine
enteroendocrine cell line that expresses proglucagon. The
response was not shown in cultured cell lines from
TRPA1-/- mice or after pharmacological blockade of
TRPA1 receptors (248). TRPA1 was co-expressed with
cholecystokinin, serotonin and ghrelin-producing cells and
regulated the secretion of these hormones (249). TRPA1
agonists, allyl isothiocyanate and cinnamaldehyde in-
creased serotonin release from enteroendocrine L-cells
(235). The expression of TRPA1 has also been found in du-
odenal mucosa from mice and humans and in intestinal
mouse neuroendocrine STC-1 cells, which, upon activa-
tion, induced TRPA1-dependent increases in cholecystoki-
nin secretion (234,250). Cinnamaldehyde supplementation
prevented fasting-induced hyperphagia, lipid accumulation
and inflammation in diet-induced obese animals
(247,251).
Expression of TRPA1 has also been observed in pancre-

atic β-cells, with activation inducing insulin release in
TRPA1-dependent manner (242). TRPA1 agonists regu-
lated autonomic thermoregulation (201) and thermogene-
sis in BAT (252) in mice and rats, respectively. Also,
TRPA1 is involved in enhanced headache susceptibility
in individuals with obesity (253). Overall, these studies
have established a role for TRPA1 in control of weight
gain, hormone secretion, thermogenesis, neuronal func-
tion, nutrient sensing and pancreatic function, which
suggests a potential therapeutic role of these channels in
metabolic syndrome.
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Transient receptor potential melastatin 2 channels

Transient receptor potential melastatin 2 channels are
expressed in the skin, brain, pancreas, spleen, kidney and
immunocytes, including lymphocytes, neutrophils and
monocytes/macrophages, and are involved in calcium sig-
nalling in these tissues (254–256). TRPM2 is activated by
warm temperature, increased reactive oxygen species (oxi-
dative stress), intracellular endogenous ligands, such as
ADP-ribose and cyclic ADP-ribose, and pyridine dinucleo-
tides including NAD, NAAD and NAADP (257–259).
TRPM2 deletion protected mice from developing diet-
induced obesity and insulin resistance. TRPM2-null mice
showed higher energy expenditure, enhanced insulin sensi-
tivity, anti-inflammatory effects both systemic and tissue-
selective (adipose tissue and liver), increased levels of
PPAR-α (lipid metabolic marker) and PGC1-α (browning
marker) in WAT hence a phenotype with less body mass
and adiposity (260). TRPM2 has a key role in thermoregu-
lation as a mediator for thermosensation on skin and its in-
tegration in higher brain centres. Warm temperature
detection is related to vascular dilatation with thermogene-
sis modulation in peripheral organs such as BAT and skele-
tal muscle, and TRPM2 might play a role in integration of
temperature-sensing information and accordingly modulate
the response to various metabolic states, which includes
obesity (261). Therefore, TRPM2 could integrate the infor-
mation and modulate physiological functions in response to
systemic metabolic states. Understanding the machinery of
TRPM2-mediated regulation of physiological functions
could provide novel strategies to control pathological situa-
tions involving metabolic changes.

Transient receptor potential melastatin 5 channels

Transient receptor potential melastatin 5 channels are non-
selective monovalent cation channels activated by increases
of intracellular calcium (262,263). TRPM5 is highly
expressed in liver but also present in other tissues including
the heart, brain (frontal cortex, spinal cord and pituitary
gland), kidney, spleen, lung, testes, stomach, intestine, pros-
tate and pancreas (islets of Langerhans) (264–267). Further,
using a genetic model (TRPM5-Cre reporter mouse),
TRPM5 expression was shown in taste bud cells and olfac-
tory epithelium (268).

Treatment with the TRPM5 inhibitor, quinine, prevented
high-fat diet-induced weight gain in wild-type animals, but
the mechanisms were not completely TRPM5-dependent
as the same effect was observed in TRPM5-/- mice
(269,270). Further studies concluded that TRPM5-/- mice
are resistant to the development of obesity (271,272). How-
ever, the caloric intake in TRPM5-/- was lower suggesting
that its presence on taste buds might play a role and that
TRPM5 is not directly involved in weight gain (271,272).

Thus, it can be hypothesised that TRPM5-dependent sweet
taste may be responsible for overeating in wild animals
resulting in high caloric intake and glucose intolerance
(273). Wild-type and TRPM5-/- mice, when administered
high-fat diets, if they consume the same calories, will have
similar weight gain (273), which underlies the hypothesis
that lower caloric intake due to loss of taste perception is re-
sponsible for the obesity-resistant phenotype of TRPM5-/-

animals. With the role of TRPM5 in taste perception for
sweet, bitter and umami, it may become a natural target
for the development of preventive or therapeutic strategies
for controlling energy intake and hence weight gain (274).

Transient receptor potential melastatin 8 channels

The TRP cation channel subfamily M member 8 (TRPM8),
also known as the cold and menthol receptor and the most
significant of TRPM series, is an ion channel that acts as a
cold transducer in the sensory system and enables mammals
to detect and avoid environmental cold. The channel opens
when temperature drops below 25°C and remains open at
low temperatures (275–277). Genetically engineered mice
that lack the TRPM8 receptor have reduced cold aversion
and defective responses to cooling agents, including men-
thol but also icilin and eucalyptol, which is why the crucial
contribution of TRPM8 to cold temperature and cold mi-
metic sensing in mammals is widely accepted (275–277).
TRPM8 receptors are highly enriched in the membranes of
two subsets of sensory neurons – thermoreceptors
responding to graded cool and cold stimuli, which allow
the direct encoding of environmental cool, and nociceptors
responding to deep, painful cold and re-enforcing cold aver-
sion and protective behaviours (278). Sensory nerve endings
with TRPM8 not only are present in the skin but also inner-
vate mucous membranes including the entire intestinal tract
(279–281) and thereby are involved in core body tempera-
ture detection and regulation (Fig. 2) (282). TRPM8 is
widely expressed in different sensory and non-sensory tis-
sues (265,280,281,283–288) including metabolically active
tissues such as adipose tissues (189,289–291) and brain (hy-
pothalamus) (292), and it is modulated by exogenous ago-
nists and antagonists including menthol (276).

Exposure of cold temperature and subsequent increases in
whole-body thermogenesis are related. The mechanism of
cold-induced thermogenesis mainly involves activation of
the sympathetic nervous system and is termed as adaptive
thermogenesis (293,294). It is mainly divided into shivering
and non-shivering thermogenesis, involving skeletal muscle
and adipose tissue, respectively. TRPM8 is an important
sensor that helps in maintaining body temperature (295).
Topical menthol application to the skin of whole trunk in
mice, mimicking in vivo cold exposure, led to an increase
in core body temperature, which was positively correlated
with expression of UCP1, an essential thermogenic protein
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in BAT, which mediates mitochondrial uncoupling and leads
to weight gain when deficient, as demonstrated in UCP1-
knockout mice (295,296). TRPM8-deficient mice displayed
an increase in tail heat loss and lower core body tempera-
ture when housed in a mild cold environment. This can be
associated to the development of late-onset obesity with
glucose and lipid metabolic dysfunction, diurnal hyperpha-
gia and reduced fat oxidation in TRPM8-deficient mice
(297). Non-shivering thermogenesis is crucial for mammals
as a defence mechanism against cold and classically involves
adrenergic afferent activation (298). However, the involve-
ment of TRPM8 in BAT with dietary administration of
menthol increasing UCP1 expression indicated a novel path-
way for UCP1-induced thermogenesis, without involvement
of β-adrenergic signalling, that reversed diet-induced obesity
in wild-type but not in TRPM8-/- mice (289). The fat cells
can directly sense the cold temperature and activate the
thermogenic machinery of the adipose tissue (299).
Activation of TRPM8 using menthol or icilin in vitro
increased UCP1 expression, glucose uptake, heat produc-
tion and ultimately the induction of brite-like phenotype in
WAT (290,291). Intragastric administration of the TRPM8
agonists, menthol and 1,8-cineole, increased colonic and
BAT temperature (201). Involvement of TRPM8 thermo-
genesis as a defence mechanism against cooling has also

been evident in anaesthetised rats where application of
menthol to the trunk before slow (0.0050C/s) or rapid
(0.10C/s) cooling of ambient temperature increased oxygen
consumption, decreased respiratory coefficient and in-
creased vasoconstrictive response of cooling (300,301). It
is clear that TRPM8 is critical for maintenance of core body
temperature, at least in cold conditions, and TRPM8
agonists transiently increase body temperature. The admin-
istration of TRPM8 antagonists in rat and mice implanted
with radio telemetry probes decreased body temperatures
(302). Importantly, TRPM8 is also present on WAT in
humans (Fig. 2) (290). Thus, identification of novel non-
adrenergic targets related to cold activation should allow
the activation of thermogenesis and in turn increase energy
expenditure but also have limited adverse effects associated
with sympathetic activation.

Transient receptor potential canonical channels

Transient receptor potential canonical channels in neurons
and adipocytes regulate energy homeostasis (303–305).
POMC-expressing arcuate nucleus neurons express TRPC
1, 4 and 5 in mice (305). TRPC1 and TRPC5 channels have
differential functional expression during adipocyte differen-
tiation with mRNA levels increased 16 and 37-fold,

Figure 2 Schematic diagram presenting mechanism of action of TRPM8 agonists in preventing obesity via enhancing energy expenditure. TRPM8
activation at sensory nerve ending (on skin and gut) induced adaptive thermogenesis, which lead to the induction of energy expenditure via different
mechanisms. These effects pharmacologically mimic cold condition and prevent high-fat diet-induced insulin resistance, ectopic fat deposition and
weight gain. BAT, brown adipose tissue; TRPM, transient receptor potential melastatin; WAT, white adipose tissue. [Colour figure can be viewed at
wileyonlinelibrary.com]
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respectively (306). Also, both these TRP subunits were
identified in fat from mice and humans (306).

Transient receptor potential canonical channels as a
heteromer of TRPC 1, 4 and 5 channels regulate leptin-
dependent depolarisation and activation of hypothalamic
POMC neurons by a Janus 2 tyrosine kinase (Jak 2)/
phosphatidylinositide 3-kinase/phospholipase Cγ1 pathway
(305). TRPC (TRPC5 and TRPC1) channels also regulate
serotonin-mediated depolarisation in a different set of
POMC neurons (leptin-insensitive but express 5-HT2C

receptors) (307). Neuronal and POMC-specific loss of
TRPC5 subunits was sufficient to decrease energy
expenditure and increase food intake resulting in elevated
body weight (308). TRPC5-deficient POMC neurons also
prevented the anorexigenic effects of leptin and 5-HT2C

receptor agonists and the 5-HT2C receptor agonist
lorcaserin-induced improvements in glucose and insulin
tolerance (308). Whole-body and mediobasal (direct
detection of metabolic signal) hypothalamus TRPC3-
deficient mice have increased body weight and food intake,
implicating the involvement of TRPC3 in hypothalamic
glucose detection and energy regulation (309). TRPC3-
deficient mice abolished increased insulin secretion follow-
ing intra-carotid glucose injection as well as intra-
cerebroventricular glucose injection-induced anorectic
effects (309). Loss of function of TRPC3 prevented calcium
responses to glucose in mediobasal hypothalamic neurons
(309).

Adiponectin release was increased by disruption of
TRPC1/TRPC5 in adipocytes in vitro with blocking anti-
bodies or small inhibitory RNA or in vivo by overexpres-
sion in mice of a dominant negative TRPC5 protein (306).
TRPC1 functions as a major Ca2+ entry channel in adipo-
cytes. TRPC1 knockout mice have lower fat mass and
fasting glucose concentrations when fed high-fat diet and
exercised as compared with littermate control mice (310).
Adipocyte numbers (subcutaneous and visceral adipose
tissue) and autophagy markers were decreased whereas
apoptosis markers were increased in both TRPC1 knockout
mice fed a high-fat diet and exercised, hence suggesting
important roles of TRPC1 in the regulation of adiposity
(310). Polyunsaturated fatty acids such as α-linolenic acid,
docosahexaenoic acid and eicosapentaenoic acid are inhibi-
tors of TRPC1/C5 suggesting the involvement of these
channels in metabolic benefits of these fatty acids (306).

Others

Additional TRP channels have been noted to be involved in
obesity. Ten thermo-TRPs are expressed in both inducible
BAT and subcutaneous WAT in mice (311). TRPV6 and
TRPC6 showed differential expression in murine WAT and
BAT, suggesting differential roles in energy expenditure
and adaptive thermogenesis (189). TRPC4 and TRPC6

were differentially expressed in pre-adipocytes and adipo-
cytes suggesting their importance during adipogenesis
(189). Population-wide genetic linkage analysis implicated
TRPC4 (312), TRPML (313) and TRPP2 (313) in humans
with obesity. Expression of TRPC1, TRPC3, TRPM2,
TRPM5, TRPV4, TRPV5, TRPV6, MCOLN2 (TRPML2)
and MCOLN3 (TRPML3) genes was decreased whereas
gene expression of TRPC6 was increased in a Turkish
population with metabolic syndrome, hence suggesting a
relationship between gene expression of TRP channels and
metabolic syndrome (314). The presence of many TRP
channels could be causal for metabolic function but could
be casual given the many physiological functions of these
channels. More in-depth animal studies using knockout
models followed by population-based clinical studies will
unravel the involvement of these channels in the pathogene-
sis and prevention of obesity.

Expression of transient receptor potential channels
in other metabolically active tissues (pancreas and
skeletal muscle) and their sensory nervous
innervations

Pancreas and skeletal muscles are metabolically active tis-
sues. The expression of TRP channels was observed in dif-
ferent pancreatic cell lines (β TC-3 [TRPC4, TRPC6 but no
TRPC1]; INS-1 [TRPC1, TRPC4, TRPM3, TRPM5 and
TRPV1]; MIN6 [TRPC1, TRPM5, TRPV2 and TRPV4]),
mouse pancreatic islets (TRPC1, TRPC4, TRPM2, TRPM3,
TRPM4, TRPM5, TRPV2 and TRPV4), rat pancreatic islets
(TRPA1, TRPC1, TRPC4, TRPM2, TRPV1 and TRPV5)
and human pancreatic islets (TRPC1, TRPM2, TRPM4,
TRPM5, TRPV5 and TRPV6) (242,315–320). RNA
sequencing data of purified pancreatic β-cells suggested
that TRPM7, TRPP2, TRPM4, MCOLN1 (TRPML1),
MCOLN3 (TRPML3), TRPC1, TRPM3 and TRPM2 are
expressed, while the remaining TRP channels are not
expressed or have very low expression in the β-cells from
humans (321). Mild heat exposure induced TRPM2-
dependent and ATP-sensitive K channel-independent cyto-
solic Ca2+ increase and insulin release in pancreatic islets
and in rat insulinoma RIN-5F cells lines (258). Further, se-
cretion of insulin from pancreatic islets of TRPM2 knockout
mice was impaired in response to glucose (322). TRPM2
knockout mice also exhibited impaired oral and intraperito-
neal glucose tolerance test (322). Similarly, TRPM3 channel
activators, pregnenolone sulphate and CIM0216, also
increased the insulin secretion from pancreatic β-cells
in vitro (323,324). Likewise, the knockdown of TRPV2
from MIN6 or presence of tranilast, a TRPV2 antagonist,
inhibited the release of glucose-induced insulin secretion
in vitro (325). Osmotic, thermal or pharmacological activa-
tors of TRPV4 increased insulin secretion in INS-E1 β-cells
in vitro (326). TRPM7 and TRPC3 are dominant TRP
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channels in mouse skeletal muscles among many other TRP
channels including TRPM7, TRPC3, TRPV3, TRPC1,
TRPC4, TRPC6, TRPM4, TRPV6, TRPM2, TRPC2,
TRPC3, TRPV2, TRPV3, TRPV4, TRPM5, TRPM3,
TRPM2, TRPM3, TRPM6, TRPM7 and TRPM1
(218,327,328). The expression of these different TRP
channels is not uniform in different skeletal muscles (327).
Similarly, human skeletal muscles also contain TRPC1,
TRPC2, TRPC4, TRPC6, TRPM2, TRPM3, TRPM4,

TRPM6 and TRPM7 (218,265,329). The presence of TRP
channels in these metabolically active tissues suggests their
relevance in metabolism and energy regulation.
Sensory nervous innervations in metabolically active tis-

sues are critical for metabolic homeostasis. WAT contains
small diameter, unmyelinated TRPV1-expressing sensory
nerves (102). It has been postulated that in the absence of
TRPV1-containing sensory nerves, the central control of
sympathetic activity in general and lipolysis per se was lost;

Figure 3 TRP channels can modulate energy regulation by different mechanisms. (1) Modulation of anorectic/orexogenic gene expression; (2) nutrient
sensing and modulation of gut hormone and microbiota; (3) modulation of gut-brain axis; (4) adipocyte differentiation modulation; (5) enhanced use of en-
ergy stores; (6) regulation of peripheral mechanisms of hunger and satiety; (7) enhanced energy expenditure. TRP, transient receptor potential; TRPA, TRP
ankyrin; TRPM, TRP melastatin; TRPV, TRP vanilloid. [Colour figure can be viewed at wileyonlinelibrary.com]

TRP channels in obesity M. Bishnoi et al. 1281obesity reviews

© 2018 World Obesity Federation Obesity Reviews 19, 1269–1292, September 2018

http://wileyonlinelibrary.com


hence, TRPV1-deficient animals showed reduced weight
gain as compared with littermate controls (167). CGRP,
along with adrenomedullin, is present on sensory nerves
(i.e. subpopulation of capsaicin-sensitive A and C primary
afferents), isolated preadipocytes and adipocytes, and
abdominal fat from humans (330,331). CGRP inhibited
noradrenaline-induced thermogenesis in BAT, and this
might affect noradrenaline-induced lipolysis in WAT (332).
To elucidate this, further electrophysiology-related
experiments on WAT and BAT afferents are required. Also,
the identification and characterisation of CGRP binding to
calcitonin receptor-like receptor and receptor activity
modifying protein-1 on sympathetic nerves innervating
adipose tissue is important and will enable us to confirm
the role of TRP-expressing sensory nerves in adipose
tissue-mediated metabolic homeostasis.

Transient receptor potential vanilloid 1 is functionally
expressed on sensory nerves innervating the islets and
plays a significant role in the development of type 1 diabe-
tes (333,334). It has roles in the regulation of insulin secre-
tion, glucose homeostasis and β-cell physiology, primarily
via neuropeptide release (318,333,335). TRPV1/CGRP
and TRPM8-expressing sensory afferents innervate the
hepatic portal vein and control neuronal regulation of
insulin and glucose homeostasis (336). Liver-related
paraventricular nucleus neurons are also regulated by
TRPV1, suggesting its influence in the regulation of
hepatic glucose production (337).

Transient receptor potential vanilloid 1 and TRPA1
modulate pre-autonomic neuronal activity at the level of
hypothalamus and brainstem by increasing or decreasing
autonomic nervous system activity (244). Increased sympa-
thetic and decreased parasympathetic activity have been
associated with development of metabolic syndrome (244).
TRPA1 is functionally expressed in many brain areas,
including the supraoptic nucleus of the hypothalamus and
nucleus tractus solitarii, and is able to modulate neuronal
activity, glutamate release and vagal communication
(338,339). TRPA1 can be the crucial link between oxida-
tive stress, inflammation, altered neuronal activity and
vagal dysfunction, all these playing major roles in meta-
bolic dysregulation (244). TRPM8-sensory fibres innervate
the main tail vessels (297). TRPM8-deficient mice induced
an increase in tail heat loss when housed at cold tempera-
tures and during food deprivation; hence, TRPM8 is
required and is involved in thermoregulation and energy
expenditure (297).

Recent advances in the role of gut-brain axis in metabolic
complications have also rekindled the discussion on the
involvement of TRP-expressing sensory afferents in the
gastrointestinal tract (280,340–344). TRPV1 is present is
gastrointestinal vagal afferents (340,342,344,345). At high
concentrations, capsaicin permanently ablated these sensory
neurons, a technique used frequently to study the role of the

unmyelinated vagal sensory neurons of the gut (346,347).
This, along with other techniques, will enable us to
delineate the role of TRP-containing sensory nerves in
gastrointestinal tract and their importance in the release of
gut hormones, nutrient sensing, glucose and insulin homeo-
stasis, gut microbiota and metabolite changes as all of these
are of significance for metabolic health. TRPA1 are
functionally expressed in the enteric nervous system
throughout the mouse intestine and are involved in the re-
lease of gut hormones from different locations (343).
TRPA1 are present in duodenal mucosa from mice and
humans and neuroendocrine STC-1 cells and induce chole-
cystokinin release (234). TRPA1-induced alterations in gut
hormones secretion showed physiological relevance for de-
creasing obesity (243,246,248,348). Activation of TRPA1-
containing myenteric neurons inhibited spontaneous con-
tractions and transit in intestine (343). TRPM8, alone or
co-expressed with TRPV1 and TRPA1, is present on colonic
sensory neurons and inhibits their downstream chemosen-
sory and mechanosensory actions (280). TRPM8 is
also functionally expressed in oesophageal vagal jugular
neurons and has a potential role in esophageal sensory
transduction (349).

Overall, determining the unique role of sensory TRP
channels on different metabolically active tissues may lead
to the development of newer brain-periphery axis-based
approaches for maintaining proper metabolism.

Conclusion and future directions

The obesity epidemic is a serious global concern. Obesity is
a major risk factor for type-2 diabetes (insulin resistance),
dyslipidaemia, hypertension and other cardiovascular
complications, certain forms of cancer and osteoarthritis.
The pharmacological options for obesity prevention and
treatment are still very limited. There is now relevant
evidence that TRP channels regulate energy homeostasis
by different mechanisms including increases in sympathetic
outflow, browning of WAT, BAT activation and biogenesis,
adaptive thermogenesis, regulating hunger and satiety by
central (hypothalamic neuron activation) and peripheral
(gut hormone release) mechanisms and enhancing health-
promoting gut microbiota (Fig. 3).

Despite recent studies showing promising results related
to involvement of these channels in central and peripheral
regulation of energy, the translation to preventive or thera-
peutic strategies to combat obesity in humans is challenging
and uncertain. TRP channels have physiological functions
in every tissue type, so the responses to changes in channel
function are unlikely to be tissue-selective. However,
tissue-selective responses may not be required in obesity as
all tissues and organs are likely to be damaged. The role of
TRP channels in calcium permeability and intracellular
calcium signalling is important for their role in energy
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homeostasis. However, calcium has many other physiologi-
cal functions including muscle excitation, redox homeosta-
sis, cell toxicity and death. Hence, it is essential to
characterise tissue or cell-specific functions to a particular
TRP channel. It is unclear whether channel activation or
inhibition, because of desensitisation or antagonism of these
channels, primarily TRPV1, is responsible for these effects.
Questions remain on the possible central and peripheral
upstream and downstream signalling pathways of these
channels. The optimal mode of administration, whether
through food (prevention or reversal) or therapeutics (oral
or topical), is also not clear. These channels are present on
multiple tissues, and their involvement in different physio-
logical actions increases the risk of adverse effects during
the treatment of obesity from actions on non-metabolic
tissues. Thus, the concept that selected TRP channels can
be modulated by dietary constituents is intriguing and
worth pursuing. In summary, further research is needed
before final conclusions are made, but undoubtedly, TRP
channels are potential targets for weight management.
Hence, this TR(i)P of discovery is essential for metabolically
healthy living.
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