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Abstract: The present study aimed to analyze the antioxidant and antimicrobial activity
of anthocyanins extracted from colored wheat flour and wheat-grass juice against human
pathogens. The total anthocyanin content and antioxidant potential in colored wheat flour and
wheat-grass juice extracts were significantly higher than white flour and wheat-grass juice extracts.
Ultra-performance liquid chromatography showed the maximum number of anthocyanin peaks
in black wheat, with delphinidin-3-o-galactoside chloride, delphinidin-3-o-glucoside chloride, and
cyanindin-3-o-glucoside chloride as the major contributors. Among flour extracts, maximum zones
of inhibition against Staphylococcus aureus (MTCC 1934), Pseudomonas aeruginosa (MTCC 1434),
Escherichia coli, and Candida albicans (MTCC 227) were produced by black flour extract, having
the highest anthocyanin content. It exhibited a minimum microbicidal concentration (MMC) of
200 mg/mL against E. coli and C. albicans; and 100 and 150 mg/mL against S aureus and P. aeruginosa,
respectively. Black and purple flour extracts exhibited a minimum inhibitory concentration (MIC) of
50 mg/mL against S aureus and P. aeruginosa. White flour extracts did not show mmC against E. coli
and C. albicans. Among wheat-grass juice extracts, black wheat-grass was most effective and showed
an MIC of 100–150 mg/mL against all pathogens. It exhibited an mmC of 200 mg/mL against S aureus
and P. aeruginosa. Hence, anthocyanin-rich colored wheat could be of nutraceutical importance.

Keywords: black wheat; purple wheat; black wheat-grass; antioxidant; minimum inhibitory
concentration (MIC); minimum microbicidal concentration (MMC)

1. Introduction

Staple foods constitute the majority of a particular diet and supply most of the total energy needs
and nutrient requirements of populations. Wheat is one of the most important food crops in the
world and is the main source of energy in developing nations [1]. It provides substantial amounts of
many beneficial nutrients like proteins; vitamin B and E; dietary fibers; minerals like iron and zinc;
and phytochemicals such as phenolics and flavonoids [2]. Wheat-grass, the young 10 days old shoots
of wheat, Triticum aestivum, is the storehouse of several nutrients that are important for maintaining
good health [3]. It is a rich source of proteins; essential amino acids; carbohydrates; dietary fibers;
chlorophyll; vitamin A, B, C, and E; minerals such as iron, calcium, magnesium, and selenium [4,5];
and some phenolic compounds including flavonoids [6]. Phenolic and flavonoid compounds decrease
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cell damage caused by oxidative stress because these are capable of scavenging free radicals and
possess ferric reducing abilities [7,8]. Hence, wheat-grass juice is known as a superfood because of its
benefits for human health [9].

Wheat and wheat-grass are reported to possess antimicrobial activity against many common
human pathogens [10,11]. Choi et al. [12] found wheat seed ethyl acetate extracts of different wheat
varieties to be effective against the pathogens Escherichia coli, Salmonella typhimurium, and Staphylococcus
aureus using well diffusion assays. Kim et al. [13] studied the antimicrobial effect of wheat germ against
S aureus, E. coli, S. typhimurium, and Bacillus cereus and found the potential of wheat germ as a natural
antimicrobial and food preservative agent. Wheat-grass extracts are also reported to show antibacterial
activity against many bacteria like Yersinia enterocolitica and Listeria monocytogenes, which are some
foodborne pathogens [14,15]. Ashok [16] also reported the antibacterial activity of wheat-grass juice
against the pathogens E. coli, Pseudomonas aeruginosa, S aureus, and Candida albicans.

Commonly cultivated wheat (T. aestivum) is amber in color and has a much fewer amount of
anthocyanins, but colored wheat varieties (blue, black, purple, and red) of T. aestivum are rich in
anthocyanins and other phytochemicals and are becoming popular around the world nowadays [17,18].
Anthocyanin is considered as one of the flavonoids, although it has a positive charge at the oxygen atom
of the C-ring of basic flavonoid structure. It is also called the flavylium (2-phenylchromenylium) ion.
Anthocyanins are present in glycosylated forms of six anthocyanidins, namely, cyanidin, delphinidin,
pelargonidin, peonidin, petunidin, and malvidin (Figure 1). Colored wheat contains a high amount of
anthocyanins, which are bioactive compounds with numerous health benefits, including preventing
and fighting various chronic diseases such as cancer, cardiovascular diseases, diabetes, inflammation,
obesity, aging, liver dysfunction, and hypertension [17,19,20]. Besides this, anthocyanins are also
reported to possess a strong antimicrobial activity against different Gram-positive and Gram-negative
human pathogens [21,22]. Lacombe et al. [23] demonstrated that anthocyanin-rich American cranberry
showed a reduction in the growth of E. coli after treatment with anthocyanin extracts. Red cabbage,
sour cherry pomace, and Lonicera caerulea L. (haskap) berries are good sources of anthocyanins and
their extracts are used as natural antimicrobial agents to prevent foodborne outbreaks related to E. coli,
S aureus, L. monocytogenes, S. typhimurium, and B. cereus [24,25].Molecules 2020, 25, x FOR PEER REVIEW 11 of 20 
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Figure 1. Structures of different anthocyanins present in wheat.

Although an extensive body of scientific literature exists on the antimicrobial effects of anthocyanins
extracted from fruits and vegetables, little is known about their antimicrobial properties in grains [26].
In addition, plant-based natural antimicrobial or biocontrol agents with therapeutic properties have
attracted attention in recent years in the control of human and plant infectious diseases. The National
Agri-Food Biotechnology Institute (NABI), Punjab, India has developed colored wheat varieties
(black, purple, and blue) of T. aestivum rich in anthocyanins and the present research work was
designed with the objective to elucidate the antagonistic activity of anthocyanins extracted from
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black-, purple-, and blue-colored wheat flour and wheat-grass against some common human pathogens
viz., S aureus, P. aeruginosa, E. coli, and C. albicans.

2. Results

2.1. Total Anthocyanin Content in Wheat Flour and Wheat-Grass Juice

The TAC of wheat flour ranged between 6.61 and 95.04 mg/kg and followed the order
black > blue > purple > white. All colored wheat varieties had significantly higher TAC content
than white wheat (Figure 2a). In the case of wheat-grass juice, TAC content ranged between 8.88 and
72.26 mg/kg. The highest TAC content was observed in black wheat-grass juice, followed by blue and
purple wheat-grass juice and the lowest was in white wheat-grass juice (Figure 2d).
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Figure 2. Total anthocyanin content (A,D); and antioxidant potential of wheat
flour and wheat-grass juice using DPPH (2,2-diphenyl-1-picrylhydrazyl) (B,E) and ABTS
((2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (C,F) assays. Each bar represents the mean of
three replicates ± standard deviation. Significant differences in the bar heights analyzed according to
one-way ANOVA. Different letters above bars in each graph represent significantly different values
(p < 0.05) designated with a < b < c. Similar letters above the bars represent values being statistically on
par. WF—white wheat flour; BF—blue wheat flour; PF—purple wheat flour; BLF—black wheat flour;
WG—white wheat-grass; BG—blue wheat-grass; PG—purple wheat-grass; BLG—black wheat-grass.

2.2. Antioxidant Potential of Wheat Flour and Wheat-Grass Juice

2.2.1. DPPH Assay

The percent inhibition of DPPH (2,2-diphenyl-1-picrylhydrazyl) by different colored wheat flours
ranged between 44.20 and 85.69%, with maximum inhibition obtained in the case of black wheat and
minimum in white wheat. Purple and blue wheat flours had statistically similar DPPH inhibitory
activity. The antioxidant potential of colored wheat flours was significantly higher than white wheat
flour (Figure 2b). In the case of wheat-grass juices, percent inhibition of DPPH ranged between 42.46
and 70.19%. Among colored wheat-grass juices, maximum inhibition was shown by black wheat-grass
juice followed by purple and blue wheat-grass juice, whereas the lowest activity was shown by white
wheat-grass juice (Figure 2e).
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2.2.2. ABTS Assay

The percent inhibition of ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) by different
wheat flours ranged between 27.78 and 71.11% and followed the order black > purple > blue > white
(Figure 2c). In the case of wheat-grass juices, the percent inhibition ranged between 24.18 and 51.40%.
The highest antioxidant activity was shown by black wheat-grass juice followed by purple and blue
wheat-grass juice, whose antioxidant activities were statistically on par with each other. The lowest
activity was observed in the case of white wheat-grass juice (Figure 2f).

2.3. Determination of Anthocyanins by UPLC

UPLC analysis showed characteristic peak patterns for black, purple, blue, and white wheat flour
and wheat-grass juice anthocyanin extracts. In the case of wheat flours, the maximum number of
anthocyanin peaks (11) was identified in black wheat extracts followed by blue (10) and purple wheat
flour extracts (6). White wheat flour extracts showed only two small peaks depicting trace amounts of
anthocyanins (Figure 3).

Among 11 anthocyanin peaks in black wheat flour anthocyanin extracts, the highest
concentration was observed for delphinidin-3-o-galactoside chloride (29.14 ppm) followed by
delphinidin-3-o-glucoside chloride (25.64 ppm), cyanindin-3-o-glucoside chloride (20.50 ppm),
and cyanindin-3-o-rutinoside chloride (11.14 ppm). The other peaks were observed for
delphinidin-3-o-rutinoside chloride, peonidin-3,5-di-o-glucoside chloride, petunidin-3-o-glucoside
chloride, pelargonidin 3-o-glucoside chloride, peonidin-3-o-glucoside chloride, peonidin-3-o-rutinoside
chloride, and malvidin-3-o-glucoside chloride (Table 1).

Table 1. Concentration of different anthocyanins (ppm) present in wheat flour and wheat-grass
juice extracts.

Wheat Flour Wheat-Grass

Anthocyanins Black Purple Blue White Black Purple Blue White

DGl 29.14 ± 0.87 g 0.40 ± 0.02 b 4.95 ± 0.04 f 0.03 ± 0.01 a - - - -
DG 25.64 ± 0.69 f 0.08 ± 0.00 a 0.40 ± 0.01 a - - - - -
DR 0.66 ± 0.06 ab - 2.08 ± 0.09 c - 2.03 ± 0.08 b 0.21 ± 0.03 b 2.36 ± 0.05 d -
CG 20.50 ± 1.06 e 2.64 ± 0.04 e 4.50 ± 0.03 e 0.07 ± 0.01 b 4.74 ± 0.51 d 0.23 ± 0.02 b - 0.37 ± 0.04 b

PODG 0.23 ± 0.07 a - 0.31 ± 0.10 a - - - - 0.26 ± 0.04 a

PTG 2.29 ± 0.21 c - 3.18 ± 0.30 d - - - - -
PLG 2.13 ± 0.05 c 1.88 ± 0.06 d 0.39 ± 0.09 a - 2.77 ± 0.11 c 0.41 ± 0.03 d 0.40 ± 0.03 c 0.35 ± 0.02 b

POG 1.40 ± 0.09 bc - - - 1.03 ± 0.15 a 0.32 ± 0.06 c 0.14 ± 0.01 a -
POR 0.97 ± 0.10 ab - 0.76 ± 0.26 b - - 0.18 ± 0.03 ab 0.31 ± 0.03 b -
MG 2.18 ± 0.17 c 1.32 ± 0.04 c 5.50 ± 0.15 g 0.12 ± 0.01 c 1.25 ± 0.17 a - 0.15 ± 0.01 a -
CR 11.14 ± 0.25 d 0.20 ± 0.01 ab 0.60 ± 0.17 ab - - - - -

DCH - - - - 1.89 ± 0.30 b 0.14 ± 0.01 a - -

Values are the means of three replicates ± standard deviation. Different letters in each column
represent significantly different values (p < 0.05) designated as a < b < c. Similar letters in
the column represent values being statistically on par. DGl—delphinidin-3-o-galactoside chloride;
DG—delphinidin-3-o-glucoside chloride; DR—delphinidin-3-o-rutinoside chloride; CG—cyanindin-3-o-glucoside
chloride; PODG—peonidin-3,5-di-o-glucoside chloride; PTG—petunidin-3-o-glucoside chloride; PLG—pelargonidin
3-o-glucoside chloride; POG—peonidin-3-o-glucoside chloride; POR—peonidin-3-o-rutinoside chloride;
MG—malvidin-3-o-glucoside chloride; CR—cyanindin-3-o-rutinoside chloride; DCH—delphin chloride
(delphinidin-3,5-di-o-glucoside chloride).

The blue wheat flour anthocyanin extract chromatograph consisted of 10 identified anthocyanin
peaks similar to that of black wheat flour extracts, except it did not contain peonidin-3-o-glucoside
chloride. In the case of blue wheat extracts, the highest concentration was observed in the case of
malvidin-3-o-glucoside chloride (5.5 ppm), followed by delphinidin-3-o-galactoside chloride (4.95 ppm),
cyanindin-3-o-glucoside chloride (4.5 ppm), and petunidin-3-o-glucoside chloride (3.18 ppm).
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Purple wheat flour anthocyanin extract chromatographs showed the presence of six identified
anthocyanin peaks, with the highest concentration observed for cyanindin-3-o-glucoside chloride
(2.64 ppm) followed by pelargonidin 3-o-glucoside chloride (1.88 ppm) and malvidin-3-o-glucoside
chloride (1.32 ppm). The other peaks were identified as delphinidin-3-o-galactoside chloride,
delphinidin-3-o-glucoside chloride, and cyanindin-3-o-rutinoside chloride.

White wheat flour extract chromatographs showed the presence of trace amounts of three identified
anthocyanins corresponding to delphinidin-3-o-galactoside chloride, cyanindin-3-o-Glucoside chloride,
and malvidin-3-o-glucoside chloride.

Wheat-grass juice extracts had a lesser number of anthocyanin peaks in comparison to wheat
flour extracts. Black wheat-grass juice anthocyanin extract chromatographs showed six identified
peaks, with the highest concentration observed in the case of cyanindin-3-o-glucoside chloride
(4.74 ppm) followed by pelargonidin 3-o-glucoside chloride (2.77 ppm). The other peaks observed
were delphinidin-3-o-rutinoside chloride, peonidin-3-o-glucoside chloride, malvidin-3-o-glucoside
chloride, and delphin chloride.

Purple wheat-grass juice anthocyanin extract chromatographs also showed the presence of six
identified peaks and had similar pattern as that of black wheat-grass juice extracts, except for it
consisted of peonidin-3-o-rutinoside chloride instead of malvidin-3-o-glucoside chloride. However,
the concentration of all anthocyanins in purple wheat-grass extracts was less than 1 ppm, with the
highest observed in the case of pelargonidin 3-o-glucoside chloride (0.41 ppm).

Delphinidin-3-o-rutinoside chloride (2.36 ppm) was found to be highest in blue
wheat-grass juice anthocyanin extracts. The other four identified anthocyanin peaks viz.,
pelargonidin 3-o-glucoside chloride, peonidin-3-o-glucoside chloride, peonidin-3-o-rutinoside chloride,
and malvidin-3-o-glucoside chloride were less than 1 ppm in concentration.

White wheat-grass juice anthocyanin extract chromatographs showed the presence of three peaks
viz., cyanindin-3-o-glucoside chloride (0.37 ppm), peonidin-3,5-di-o-glucoside chloride (0.26 ppm),
and pelargonidin 3-o-glucoside chloride (0.35 ppm).

2.4. Antimicrobial Activity of Colored Wheat Anthocyanins Against Microbial Strains Using
Agar-Overlay Method

The results revealed high antimicrobial activity of anthocyanin extracts from colored wheat flour
and wheat-grass juice against the human pathogens in comparison to white wheat. The antimicrobial
activity of the extracts was dose-dependent.

Black wheat flour anthocyanin extracts (50–200 mg/mL) showed antimicrobial activity against all
the pathogens. Among wheat flour anthocyanin extracts, antimicrobial activity followed the order
black wheat > purple wheat > blue wheat > white wheat. All extracts produced clear halo zones
against S aureus, P. aeruginosa, and C. albicans (Figure 4). Black wheat flour extracts (200 mg/mL)
showed significantly higher zones of inhibition against C. albicans (2.57 cm) and S aureus (2.50 cm)
amongst all flour extracts. Black and purple wheat flour extracts (200 mg/mL) showed maximum but
statistically similar zones of inhibition against P. aeruginosa (2.73 and 2.60 cm) and E. coli (2.50 and
2.37 cm) in comparison to other flour extracts, as shown in Table 2.

At this concentration, blue wheat flour did not show any activity against S aureus and C. albicans.
Black and purple wheat flour extracts showed activity against all the pathogens, even at low extract
concentration (50 mg/mL), while at this concentration, white flour extracts did not show any activity
against C. albicans.

Black wheat-grass juice extracts (200 mg/mL) produced significantly higher zones of inhibition
against P. aeruginosa (2.60 cm) and C. albicans (2.37 cm) in comparison to all other extracts. Black as
well as purple wheat-grass juice extracts (200 mg/mL) showed significantly higher zones of inhibition
against S aureus (2.23 and 2.20 cm) and E. coli (1.93 and 2.0 cm). Black and purple wheat-grass
juice extracts showed promising activity against all four pathogens, even up to 50 mg/mL extract
concentration, while at this concentration, blue wheat flour did not show any activity against S aureus



Molecules 2020, 25, 5785 7 of 19

and C. albicans. White wheat-grass juice extracts also did not show any activity against C. albicans at
this concentration.
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Figure 4. Antagonistic activity of anthocyanin extracts of black wheat flour against. (1) Staphylococcus
aureus, (2) Pseudomonas aeruginosa, (3) Escherichia coli, and (4) Candida albicans at different anthocyanin
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Table 2. Zones of inhibition (cm) in the growth of human pathogens by anthocyanin extracts from
colored wheat flour and wheat-grass juice.

Wheat
Sample

Extract
Conc. S aureus P. aeruginosa E. coli C. albicans

(mg/mL) WF 1 WG 2 WF 1 WG 2 WF 1 WG 2 WF 1 WG 2

Black 200 2.50 ± 0.05 k 2.23 ± 0.06 k 2.73 ± 0.04 g 2.60 ± 0.10 i 2.50 ± 0 h 1.93 ± 0.04 g 2.57 ± 0.04 g 2.37 ± 0.04 i

150 1.87 ± 0.06 g 1.77 ± 0.04 i 2.37 ± 0.06 def 197 ± 0.12 g 2.07 ± 0.05 f 1.60 ± 0.02 ef 2.03 ± 0.06 e 2.03 ± 0.06 h

100 1.63 ± 0.05 f 1.27 ± 0.05 fg 2.03 ± 0.12 c 1.46 ± 0.08 f 1.53 ± 0.06 c 1.03 ± 0.05 d 1.83 ± 0.03 d 1.77 ± 0.03 g

50 1.23 ± 0.04 c 0.83 ± 0.06 d 1.63 ± 0.12 b 1.17 ± 0.04 e 1.13 ± 0.06 ab 0.77 ± 0.12 bc 1.17 ± 0.04 b 1.17 ± 0.04 de

Purple 200 2.27 ± 0.06 j 2.20 ± 0.10 k 2.60 ± 0.10 fg 2.27 ± 0.07 h 2.37 ± 0.04 gh 2.00 ± 0.10 g 2.40 ± 0.10 f 1.93 ± 0.12 gh

150 2.07 ± 0.05 hi 1.87 ± 0.06 ij 2.13 ± 0.12 cd 1.87 ± 0.05 g 1.97 ± 0.12 e 1.80 ± 0.07 fg 2.03 ± 0.12 e 1.50 ± 0.03 f

100 1.77 ± 0.07 fg 1.07 ± 0.05 e 2.07 ± 0.05 c 1.03 ± 0.05 de 1.80 ± 0.10 de 1.40 ± 0.10 e 1.67 ± 0.06 c 1.00 ± 0.10 d

50 1.43 ± 0.12 de 0.57 ± 0.03 c 1.57 ± 0.11 b 0.50 ± 0 b 1.20 ± 0.10 ab 0.90 ± 0.04 cd 1.57 ± 0.06 c 0.57 ± 0.08 c

Blue 200 1.93 ± 0.06 gh 1.53 ± 0.05 h 2.47 ± 0.05 ef 1.53 ± 0.04 f 2.30 ± 0.10 g 1.10 ± 0.11 d 1.53 ± 0.11 c 1.53 ± 0.06 f

150 1.60 ± 0.10 ef 1.17 ± 0.06 ef 2.13 ± 0.05 cd 0.97 ± 0.06 d 2.07 ± 0.02 f 0.87 ± 0.04 cd 1.07 ± 0.05 b 1.20 ± 0.10 e

100 1.30 ± 0.10 cd 0.73 ± 0.02 d 1.73 ± 0.12 b 0.33 ± 0.06 b 1.27 ± 0.03 b 0.0 ± 0.0 a 0.0 ± 0.0 a 0.47 ± 0.05 c

50 0.0 ± 0.0 a 0.0 ± 0.0 a 0.97 ± 0.06 a 0.0 ± 0.0 a 1.07 ± 0.06 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a

White 200 2.13 ± 0.12 ij 1.93 ± 0.06 j 2.23 ± 0.07 cde 2.17 ± 0.05 h 2.47 ± 0.07 gh 1.97 ± 0.12 g 2.37 ± 0.07 f 1.07 ± 0.15 de

150 1.77 ± 0.06 fg 1.37 ± 0.04 g 2.07 ± 0.12 c 1.83 ± 0.05 g 1.97 ± 0.11 ef 1.43 ± 0.05 e 2.03 ± 0.05 e 0.20 ± 0.0 b

100 1.30 ± 0.10 cd 0.87 ± 1.0 d 1.63 ± 0.12 b 1.37 ± 0.12 f 1.67 ± 0.08 cd 0.90 ± 0.09 d 1.0 ± 0.10 b 0.0 ± 0.0 a

50 0.83 ± 0.07 b 0.27 ± 0.07 b 0.97 ± 0.15 a 0.77 ± 0.12 c 1.53 ± 0.05 c 0.57 ± 0.05 b 0.0 ± 0.0 a 0.0 ± 0.0 a

1—WF (wheat flour); 2—WG (wheat-grass juice). Values are the means of three replicates ± standard deviation.
Values followed by same letter in column are not significantly different (Tukey’s test, p > 0.05).

2.5. Minimum Inhibitory Concentration (MIC) and Minimum Microbicidal Concentration (MMC) of Colored
Wheat Anthocyanin Extracts Against Human Pathogens

The results revealed the high and promising antimicrobial activity of colored wheat anthocyanin
extracts against the human pathogens in comparison to white wheat extracts.

All the extracts showed dose-dependent antimicrobial activity and showed the highest activity
at 200 mg/mL extract concentration. Maximum antimicrobial activity was shown by black wheat
flour extracts, followed by purple flour extracts (Table 3). Black wheat flour showed MIC against
all the pathogens in the range of 50–150 mg/mL, with the highest (50 mg/mL) against S aureus and
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P. aeruginosa. The mmC of 100 and 150 mg/mL of black wheat flour extract completely inhibited the
growth of S aureus and P. aeruginosa, respectively. E. coli and C. albicans were inhibited only at the higher
concentration of 200 mg/mL. Purple wheat flour (50–150 mg/mL) showed MIC against all pathogens
and showed an mmC of 150 mg/mL against S aureus and P. aeruginosa. However, among colored wheat
flour extracts, blue wheat showed minimum antimicrobial activity. It showed mmC of 200 mg/mL
against S aureus and P. aeruginosa and MIC of 100 mg/mL against P. aeruginosa and 150 mg/mL against
S aureus and E. coli. It did not show any MIC against C. albicans. In comparison to colored wheat flours,
white wheat flour extracts did not show any mmC against E. coli and C. albicans. It showed MIC of
100 mg/mL against S aureus, P. aeruginosa, and E. coli, and 200 mg/mL against C. albicans, and did not
show any antimicrobial activity below 100 mg/mL extract concentration.

Table 3. Minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) of
colored wheat anthocyanin extracts in mg/mL against human pathogens.

Wheat Sample Inhibition
S aureus P. aeruginosa E. coli C. albicans

WF 1 WG 2 WF 1 WG 2 WF 1 WG 2 WF 1 WG 2

Black
MIC * 50 100 50 150 100 100 100 150

mmC ** 100 200 150 200 200 - 200 -

Purple MIC * 50 150 50 150 100 150 150 150
mmC ** 150 200 150 - - - - -

Blue
MIC * 150 200 100 150 150 200 - -

mmC ** 200 - 200 - - - - -

White
MIC * 100 150 100 150 - 200 200 -

mmC ** 200 - 150 - - - -

* MIC—minimum inhibitory concentration; ** mmC—minimum microbicidal concentration; 1—WF (wheat flour);
2—WG (wheat-grass juice).

Black wheat-grass juice extracts showed MIC against all the pathogens in the range of
100–150 mg/mL, with the highest activity against P. aeruginosa and C. albicans. However, black
wheat-grass juice extracts showed mmC (200 mg/mL) against S aureus and P. aeruginosa only. Purple
wheat-grass juice extracts showed mmC of 200 mg/mL against S aureus and MIC of 150 mg/mL against
S aureus and P. aeruginosa. Among all the colored wheat extracts, blue wheat-grass juice extracts showed
minimum antimicrobial activity. Blue wheat-grass juice extracts did not show any mmC against any of
the pathogens and showed MIC of 150 mg/mL against P. aeruginosa and 200 mg/mL against S aureus
and E. coli. It did not show any MIC against E. coli and C. albicans. Similarly, white wheat-grass juice
extracts did not show mmC against any of the pathogens and showed MIC of 150 mg/mL against
S aureus and P. aeruginosa and 200 mg/mL against E. coli. Antibiotics in the concentration of (10 µg/mL)
completely inhibited the growth of all the pathogens.

3. Discussion

Anthocyanins are widely recognized for their antioxidant potential and several health benefits,
and anthocyanin-rich colored wheats are gaining the interest of consumers globally [27–29]. The results
showed that TAC content in colored wheat flours and wheat-grass juices were significantly higher as
compared to white wheat flour and white wheat-grass, respectively. These results are in accordance
with Abdel-Aal et al. [30], Abdel-Aal and Hulc [31], Sharma et al. [28], and Liu et al. [32], who reported
significantly higher TAC contents in colored wheat flours in comparison to white wheat flours. Similarly,
Sytar et al. [17] found that sprouts of colored wheat grains had higher TAC content and antioxidant
activity in comparison to white wheat sprouts. Anthocyanins are well known for sequestering free
radicals generated during various metabolic processes inside the body. Free radicals cause oxidative
damage to DNA and other biological molecules. In this study, DPPH and ABTS assays were used to
analyze the free radical cation quenching potential of different colored wheat flours and wheat-grass
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juices. The extent of discoloration of ABTS and DPPH reagents is used to evaluate the percent inhibition
of the ABTS or DPPH radicals by the antioxidants present in a sample. In both the assays, black wheat
flour showed the highest antioxidant potential among flour samples and black wheat-grass showed
the highest potential among wheat-grass samples, while white wheat flour and white wheat-grass
juice showed the least antioxidant potential amongst all. Similar results were obtained by Li et al. [33],
Pasqualone et al. [34], Sharma et al. [28], Li and Beta [35], and Kumari et al. [36], who reported higher
antioxidant activity of colored wheat compared to white wheat.

In our study, the determination of anthocyanins through UPLC authenticated and provided
an insight into the composition and characterization of anthocyanins in different colored wheat
flours and wheat-grasses. UPLC analysis revealed the presence of six anthocyanins peaks in
all colored wheat flour anthocyanin extracts. These were delphinidin-3-o-galactoside chloride,
delphinidin-3-o-glucoside chloride, delphinidin-3-o-rutinoside chloride, cyanindin-3-o-glucoside
chloride, pelargonidin 3-o-glucoside chloride, and peonidin-3-o-rutinoside chloride. All these
anthocyanins have been reported previously in the case of colored cereals [19,26,37,38]. In our study,
delphinidin-3-o-galactoside chloride, delphinidin-3-o-glucoside chloride, and cyanindin-3-o-glucoside
chloride were found to be the major anthocyanins in black wheat flour extracts. Cyanidin and
delphinidin have very high free radical scavenging potential and are reported to possess antiproliferative
and apoptotic effects in MCF7 human breast cancer [39]. Studies have shown cyanidin 3-glucoside to
be the major anthocyanin in black rice [40], and blue and purple corns [26]. Hao et al. [41] showed
the presence of cyanidin 3-glucoside, cyanidin 3-rutinoside, and peonidin 3-glucoside in black rice.
These anthocyanins are also present in our black wheat extracts. In our previous study, we had
shown the presence of glucosides or rutinosides linked cyanidin, delphinidin, pelargonidin, petunidin,
malvidin, and peonidin in black wheat [19]. However, in comparison to all other colored wheats, black
wheat anthocyanins are comparatively less characterized.

In blue wheat flour extracts, major anthocyanins were malvidin-3-o-glucoside chloride,
delphinidin-3-o-galactoside chloride, cyanindin-3-o-glucoside chloride, and petunidin-3-o-glucoside
chloride. Many studies have found cyanidin 3-glucoside, cyanidin 3-rutinoside, delphinidin 3-glucoside,
delphinidin 3-rutinoside, petunidin-3-glucoside, petunidin-3-rutinoside, and malvidin 3-glucoside
to be the principal anthocyanins in blue wheat [26,27,42–44]. These anthocyanins are present in our
blue wheat extracts as well. Other studies have shown the presence of cyanidin-3-glucoside and
pelargonidin-3-glucoside in blue maize [45–47].

Purple wheat flour extracts had a different chromatographic pattern of anthocyanins in comparison
to black and blue wheat extracts. The highest concentration of cyanindin-3-o-glucoside chloride
followed by pelargonidin 3-o-glucoside chloride was observed in purple wheat flour extracts.
One previous study has also shown cyanindin-3-o-glucoside chloride and pelargonidin 3-o-glucoside
chloride as the major anthocyanins in purple wheat [48]. Our results are also in accordance with
Hosseinian et al. [49], who showed the presence of delphinidin 3-galactoside, cyanidin 3-glucoside,
and pelargonidin 3-glucoside in purple wheat.

Anthocyanins from colored wheat-grasses have been characterized much less in comparison to
colored wheat flours. In the case of wheat-grass extracts, pelargonidin 3-o-glucoside chloride was
present in all the extracts. Sytar et al. [17] had studied the anthocyanin composition in sprouts of blue,
purple, and yellow wheat grains and found pelargonidin and cyanidin to be the major anthocyanins
present in these grains. In our study, the major anthocyanins present in black wheat-grass juice extract
were cyanindin-3-o-glucoside chloride and pelargonidin 3-o-glucoside chloride. Purple wheat-grass
juice extracts also had the highest content of pelargonidin 3-o-glucoside chloride. It is reported to have
antidiabetic and anti-inflammatory effects [50,51].

There has been growing interest nowadays in identifying natural therapeutic and antimicrobial
agents. The antimicrobial activity of wheat flour and wheat-grass juice extracts has been previously
reported, particularly against S aureus, E. coli, P. aeruginosa, and C. albicans [12,52,53]. However,
there are no reports on the antimicrobial properties of anthocyanin extracts from colored wheat. In the
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present study, the antimicrobial activity of anthocyanins extracted from black, purple, blue, and white
wheat flour and wheat-grass juice extract was studied and tested against Gram-positive, Gram-negative,
and yeast strains at different anthocyanin extract concentrations. The zone of inhibition obtained was
dose-dependent and with the decrease in concentration, the zone of inhibition decreased subsequently.

Among flour extracts, black wheat flour showed maximum antimicrobial activity and was most
effective in controlling the growth of all the microbial strains. All these pathogens are common human
pathogens and colored wheat extracts proved to be a potent source for inhibiting their growth. Black and
purple flour extracts were active against S aureus and P. aeruginosa, even at a very low concentration
of 50 mg/mL in comparison to white wheat. Purple wheat flour also exhibited high antagonism
against the pathogens and showed mmC of 150 mg/mL and MIC of 50 mg/mL against S aureus and
P. aeruginosa. Among colored wheat flour extracts, blue wheat exhibited minimum antagonistic activity
against these pathogens. White wheat flour, poor in anthocyanins, exhibited moderate activity, did not
show any mmC against E. coli and C. albicans, and was effective against P. aeruginosa and S aureus at
higher concentrations (100 mg/mL and above) in comparison to colored wheat extracts. The inhibitory
activity of the flour anthocyanin extracts was in the order: black > purple > blue > white. Colored
wheat flour had higher antimicrobial activity against E. coli, P. aeruginosa, C. albicans, and S aureus as
compared to normal white wheat. Among colored wheat flours, black wheat was the most effective.
This can be related to the higher anthocyanin content in black wheat flour and wheat-grass juice as
compared to purple, blue, and white wheat. Higher anthocyanin content in black wheat and the
presence of different anthocyanins, viz., pelargonidin 3-glucoside, cyanidin 3-glucoside, cyanidin
3-rutinoside, peonidin 3-galactoside, and cyanidin chloride through RP-UPLC and MS/MS analysis
has been reported in our previous studies [19,28].

Similarly, among the wheat-grass juice extracts, black wheat-grass juice extract was most effective
against the pathogens and showed MIC of 100–150 mg/mL against all the pathogens. It showed mmC
of 200 mg/mL against E. coli and C. albicans; and 100 and 150 mg/mL against S aureus and P. aeruginosa.
In comparison to colored wheat-grass juice, white wheat-grass juice extracts did not show mmC against
any of the pathogens. At a 200 mg/mL concentration, black and purple wheat-grass extracts showed
a maximum zone of inhibition against S aureus, P. aeruginosa, E. coli, and C. albicans as compared
to white wheat, which did not show any activity against C. albicans. Wheat-grass has earlier been
reported for having high antimicrobial activity [14,15]. It has shown high antimicrobial activity against
Streptococcus mutants and Lactobacillus spp. [54]. Das et al. [55] reported activity in 80% acetone extracted
wheat-grass samples against four bacteria—B. cereus, S aureus, E. coli, and Shigella flexneri—and one
fungus—Aspergillus niger. Wheat-grass significantly inhibited the growth of E. coli and can be a good
alternative to chemical antibiotics. Deshwal and Deepshikha [56] observed the antimicrobial activity
of 50% (v/v) anthocyanin extract in water and foundan inhibition zone of 28.66 mm against E. coli.
However, all these results pertain to white wheat-grass. Wheat-grass has been reported to have high
nutritional value and is a rich source of various vitamins, antioxidants, and minerals [3]. In our
study, we have found white wheat-grass to be the least effective in comparison to colored wheat-grass,
which has very high antagonistic activity against these pathogens even at a low concentration of
50 mg/mL. Besides showing strong antimicrobial activity, colored wheat is a potential nutraceutical
agent and is reported to have high antioxidant potential and possess anti-inflammatory, antidiabetic,
and antiobesity effects in mice-based models [28,29]. Hence, colored wheat consumption can lead
to numerous health benefits mainly because of their high anthocyanin content and these have been
associated with protection against different pathogens.

Many studies have reported that the antibacterial activities of plant extracts have been linked
to the presence of some bioactive compounds that protect the plants themselves against bacterial,
fungal, and viral infections [57,58]. Burdulis et al. [21] observed that extracts of berry and berry skin
rich in anthocyanins showed inhibitory effects against Gram-positive (L. monocytogenes, S aureus,
B. subtilis, and Enterococcus faecalis) and Gram-negative bacterial strains (Citrobacter freundii, E. coli,
P. aeruginosa, and Salmonella enterica ser. Typhimurium). Pomegranate fruit (Punica granatum) also
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contains a high proportion of phenolic compounds, and showed antimicrobial effect against B. subtilis,
Corynebacterium diphtheriae, S aureus, S. epidermidis, S. saprophyticus, Enterococcus faecium, E. faecalis,
Streptococcus pneumoniae, and E. coli [59]. Carrot (Daucus carota L.) has high recognition and economic
importance due to the presence of higher concentrations of bioactive compounds [60]. Acetone and
ethanol extracts of black carrot exhibited antimicrobial activity against S aureus, B. cereus, E. coli, and
Pseudomonas spp. [61]. Not only do fruits or vegetables have high antimicrobial activity, cereals too have
antimicrobial and antioxidant activity. According to a recent in vivo study, black rice extracts showed
antibacterial and anti-inflammatory effects against the ulcer- and gastroduodenal diseases-causing
bacteria Helicobacter pylori [62]. It has been reported that the seed coat extract of finger millet (Eleusine
coracana) shows antimicrobial effect against B. cereus and Aspergillus flavus [63]. The mode of action of
these extracts is via inhibition of DNA replication, protein synthesis, and breaking cell wall integrity [64].

4. Materials and Methods

4.1. Plant Material

Plant material included three colored wheat varieties of Triticum aestivum viz., black wheat [65]
(NABIMG-11), purple wheat [66] (NABIMG-10), blue wheat [67] (NABIMG-9), and one white wheat
(PBW621). All the colored wheat varieties were developed at the National Agri-Food Biotechnology
Institute (NABI), Mohali, Punjab, India through breeding techniques for anthocyanin biofortification
using donor colored wheat lines and recipient white wheat variety (PBW 621) [28,39]. White wheat
variety (PBW621) is a popular commercial high yielding wheat variety among Indian farmers.
Wheat varieties were grown in the farms of NABI, Mohali, Punjab, India (30◦44′10” N latitude at an
elevation of 351 m above sea level) in 2018–2019 in late-October and harvested in mid-April.

4.2. Preparation of Wheat Flour

Four wheat varieties of different color—white, purple, blue, and black—were used in the present
study (Figure 5A). Wheat grains were cleaned thoroughly to remove any dirt, dust, insect excreta,
or other food grains and then, grounded in an electric grinder with 0.5 mm mesh sieves to make whole
wheat flour. Flour samples were kept in airtight containers for future use.
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4.3. Preparation of Lyophilized Colored Wheat-Grass Juice

For wheat-grass production, seeds were washed with distilled water, then sterilized with 4%
sodium hypochlorite for 2 min, and put in sterilized Petri dishes with absorbent pads. Seeds were
watered regularly, and germination proceeded under controlled conditions in a growth chamber
with the following parameters: Relative humidity of 60–70% and a light/dark regime of 16/8 h at
25/20 ◦C (Figure 5B). Wheat-grass was harvested on the 10th day; wheat-grass juice was extracted
by grinding fresh leaves in an electric mixer grinder and filtering the juice through a muslin cloth.
Wheat-grass juice was lyophilized and stored at 4 ◦C for further anthocyanin content, antioxidant
potential, and antimicrobial analyses.

4.4. Microbial Cultures

Microbial cultures of human pathogens were procured from the microbial type culture collection
and gene bank facility (MTCC) of the Institute of Microbial Technology (IMTECH), Chandigarh.
These included one Gram-positive bacteria, S aureus (MTCC 1934); two Gram-negative—P. aeruginosa
(MTCC 1434) and E. coli; and one yeast strain, C. albicans (MTCC 227). The bacterial cultures S aureus,
P. aeruginosa, and E. coli were grown on Trypticase soya agar (TSA) at 37 ◦C for 24–48 h, while C. albicans
were grown on TSA and Sabouraud dextrose agar (SDA) at 28 ◦C for 24 and 72 h, respectively. All test
microorganisms were maintained on TSA slants at 4 ± 0.2 ◦C. The microbial cultures were preserved in
25 percent (v/v) glycerol solution and stored at −80 ◦C for future use.

4.5. Total Anthocyanin Content (TAC) in Wheat Flour and Wheat-Grass

Anthocyanins were extracted using the method given by Boeing et al. [68]. Two grams of each
colored wheat flour and lyophilized wheat-grass juice were taken and 20 mL of acidified methanol
(85:15, v/v; methanol:1N HCl) was added. Samples were kept overnight at 28 ◦C in an incubator
shaker with constant shaking. Thereafter, samples were centrifuged at 7000 rpm for 30 min at 4 ◦C,
and supernatants were collected and filtered through a PVDF syringe filter (0.45 µm) [28]. Anthocyanin
extraction was performed in triplicate. Total anthocyanin content (TAC) was determined using
spectrophotometric methods. The absorbance of samples was measured at 520 nm, against distilled
water as the blank. The data were expressed as micrograms (µg) of cyanidin 3-glucoside (Cy 3-glu)
equivalents per gram of dry matter using the formula given by Young and Abdel-Aal [69]:

C = (A/e) × (V/1000) ×MW × (1/sample wt) × 106

where C is the concentration of total anthocyanin (mg/kg), A is absorbance of the sample, e is molar
absorptivity of cyanidin 3-glucoside (25,965 cm–1 M–1), V is total volume of anthocyanin extract used,
and MW is the molecular weight of cyanidin 3-glucoside.

For carrying out the antimicrobial studies, anthocyanins were concentrated in a rotavapor at
37 ◦C and dried extracts were dissolved in 10% sterile Dimethyl Sulphoxide (DMSO) at the final
concentration of 200 mg/mL.

4.6. Anthocyanin Determination by Ultra Performance Liquid Chromatography (UPLC)

4.6.1. Anthocyanin Standards

Sixteen different anthocyanin standards were procured from Extrasynthase manufacturers.
These were cyanin chloride (cyanidin-3,5-di-o-glucoside chloride) [C], cyanindin-3-o-glucoside
chloride [CG], cyanindin-3-o-rutinoside chloride [CR], delphin chloride (delphinidin-3,5-di-o-glucoside
chloride) [DCH], delphinidin chloride (3,3′,4′,5,5′,7-hexahydroxyflavylium chloride) [D], delphinidin
-3-o-glucoside chloride [DG], delphinidin-3-o-rutinoside chloride [DR], delphinidin-3-o-sambubioside
chloride [DS], delphinidin-3-o-galactoside chloride [DGL], malvin chloride (malvidin-3,5-
di-o-glucoside chloride) [MC], malvidin-3-o-glucoside chloride [MG], peonidin-3-o-glucoside chloride
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[POG], peonidin-3,5-di-o-glucoside chloride [PODG], peonidin-3-o-rutinoside chloride [POR],
petunidin-3-o-glucoside chloride [PTG], and pelargonidin 3-o-glucoside chloride [PLG]. Stock solutions
of 1 mg/mL were prepared for all the standards and standard curves were made in the concentrations
ranging from 1 to 200 ppm.

4.6.2. UPLC Analysis

For UPLC analysis, the anthocyanin extracts of wheat flour and wheat-grass juice were prepared as
explained in Section 4.5. The extracts were concentrated in a rotavapor at 37 ◦C and dried extracts were
dissolved in 1 mL methanol. UPLC of these anthocyanin extracts was performed using Waters Acquity
UltraPerformance™ LC system (Waters corporation, Milford, The United States of America), equipped
with a quaternary pump system according to the method given by Sharma et al. [28], with slight
modifications. An Acquity BEH C-18 (50 × 2.1 mm id, 1.7 µm particle size) column (Waters) was used
for analysis. Detection was carried out using a photodiode array (PDA) detector with the absorbance
wavelength of 520 nm. The injection volume was 2 µL, column temperature was set at 50 ◦C, and the
flow rate was 0.5 mL min−1. Eluent A comprised 5% (v/v) formic acid and eluent B comprised HPLC
grade acetonitrile. The gradient run was 0–5.0 min: 95% A and 5% B; 5.0–5.1 min: 85% A and 15% B
(curve 6); 5.1–6.0 min: 84.5% A and 15.5% B (curve 6); 6.0–6.1 min: 84.5% A and 15.5% B (curve 6);
6.1–6.8 min: 0% A and 100% B (curve 6). The separation was carried out for 6.8 min in the gradient
elution. The identification of anthocyanins present in wheat flour and wheat-grass juice extracts was
performed by comparing the retention times of the anthocyanin peaks in sample extracts with the peaks
in standard solutions. Anthocyanin concentrations in wheat samples were calculated from calibration
curves. Three replicates of each sample were used for detection and quantification of anthocyanins.

4.7. Antioxidant Potential of Colored Wheat Flour and Wheat-Grass Juice

The antioxidant potential of wheat flour and wheat-grass was studied using two methods:

4.7.1. DPPH Radical Scavenging Assay

The antioxidant activity of the methanol extracts of anthocyanins from colored wheat flour and
lyophilized wheat-grass juice was measured using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay [70],
in which the potential of the test samples to scavenge DPPH is tested. In total, 100 µL of methanol
extracts of anthocyanins from wheat flour and wheat-grass juice samples (prepared in Section 4.5) were
added to 3.9 mL freshly prepared methanolic DPPH (60 µmol/L) solution. Mixtures were incubated
for 30 min in the dark at room temperature and thereafter, absorbance was recorded at 517 nm.
Methanol was taken as the blank and 100 µL methanol and 3.9 mL DPPH solution was taken as the
control. The antioxidant activity was calculated in terms of percentage (%) inhibition of DPPH using
the formula:

Percentage inhibition (%) = [(Acontrol − Asample)/Acontrol)] × 100 (1)

where Acontrol is the absorbance of the control reaction (containing all reagents except test compound);
and Asample is the absorbance of the test compound. All tests were carried out in triplicate.

4.7.2. ABTS Radical Scavenging Assay

The antioxidant activity of the methanol extracts of anthocyanins from colored wheat flour
and wheat-grass juice was also measured using the ABTS assay [70]. One ml of ABTS reagent was
prepared by mixing equal volumes of ABTS stock solution (7 mm) and potassium persulfate stock
solution (2.6 mm) in methanol and incubating for 16 h in the dark at room temperature. Thereafter,
the absorbance of the reagent was adjusted to 0.7 ± 0.02 at 734 nm by diluting the solution further with
methanol. A total of 100 µL of methanol extracts of anthocyanins from wheat flour and wheat-grass
juice samples (prepared in Section 4.5) were added to 3.9 mL of freshly prepared ABTS solution.
After 1h of incubation at room temperature, absorbance of the solutions was recorded at 734 nm.
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The blank consisted of methanol and the control consisted of 100 µL methanol and 3.9 mL ABTS
solution. The antioxidant activity was calculated in terms of percentage (%) inhibition of ABTS, using
the formula:

Percentage inhibition (%) = [(Acontrol − Asample)/Acontrol)] × 100 (2)

where Acontrol is the absorbance of the control reaction (containing all reagents except test compound);
and Asample is the absorbance of the test compound. All tests were carried out in triplicate.

4.8. Antimicrobial Activity of Colored Wheat Anthocyanins Against Microbial Strains Using
Agar-Overlay Method

The antagonistic activity of anthocyanins extracted from wheat flour and wheat-grass juice towards
human pathogens was tested using the agar overlay method, as described by [71]. The microbial
strains were subcultured by inoculating a single colony of the strain in the 10 mL of Trypticase soya
broth (TSB) and incubated for 24–48 h to obtain the viable count of 107 cells/mL. Sabouraud dextrose
broth (SDB) was used in the case of C. albicans. To prepare a homogeneous lawn of bacteria, 100 µL of
24–48 h old microbial cultures were mixed in 100 mL of soft TSA (0.7% agar) and poured over the thin
layer of TSA in Petri plates. Soft agar was used because extracts diffuse properly in it as compared
to normal agar. Similarly, SDA was used in the case of C. albicans. After solidification, 4 wells of
5 mm diameter were made in each plate using a sterile cork borer, and filled with 100 µL of different
concentrations of anthocyanins extracted from wheat and wheat-grass juice (50, 100, 150, 200 mg/mL
DMSO). The negative control consisted of 100 µL of uninoculated TSB and the positive control was
100 µL of antibiotic streptomycin (10 µg/mL). Incubation time varied from 24–48 h at 28 ± 2 ◦C for
C. albicans to 24 h at 37 ◦C for S aureus, P. aeruginosa, and E. coli. The size of the inhibition zone around
the wells was recorded and the antimicrobial activity (mm) was expressed as the difference between
diameter of the inhibition zone around the well and diameter of the well [72].

4.9. MIC and mmC of Colored Wheat Anthocyanin Extracts Against Human Pathogens

The broth microdilution method was used to determine the MIC and mmC of colored wheat in
96-well plates [73]. Stock solutions were prepared by dissolving test extracts in 10% sterilized DMSO.
Twofold dilution series of test extracts were prepared for the dose range 10–200 mg/mL in sterilized
TSB in 96-well microtiter plates. SDB was used for preparing serial dilution of C. albicans. The plates
were inoculated with freshly grown bacterial cultures adjusted to a concentration of 107 cfu/mL with
sterile normal saline. Briefly, 100 µL of 2x TSB was poured in each well and 10 µL aliquot of the
serial dilution starting from lower dilution in the first well (0, 25, 50, 75, 100, 150, 200 mg/mL DMSO)
prepared from the test sample was added to the wells in each row. Each well in a row having serial
dilutions was inoculated with 10 µL of the test microorganism and the final volume in each well was
made up to 200 µL with sterilized distilled water. The uninoculated sterilized medium with and
without DMSO served as the control. The antibiotic streptomycin in the concentration of 10 µg/mL
served as the positive control. The inoculated control consisted of 10 µL of the test microorganism
without wheat anthocyanin extracts.

The plates were kept for 24–48 h at 28 ± 2 ◦C for C. albicans, and for 24 h at 37 ◦C for S aureus,
P. aeruginosa, and E. coli. After incubation time, MIC was recorded as the lowest extract concentration
which inhibited the visible microbial growth when compared to the inoculated control. mmC was
determined by spread plating the 100 µL aliquot from dilutions and assessing growth on TSA medium
for bacterial cultures and SDA for C. albicans. The lowest concentration which completely killed the
inoculated microorganisms was recorded as the MMC.
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4.10. Statistical Analysis

All experiments were performed in triplicate and the results were expressed as means ± standard
deviation (SD). Results were analyzed using one-way ANOVA and Tukey test (5% probability) using
the IBM SPSS 21.0 software (IBM, Armonk, New York, NY, USA) and Graph Pad Prism 7 (GraphPad
Software, San Diego, CA, USA).

5. Conclusions

The study shows that anthocyanin-rich colored wheat flour and wheat-grass juice possess strong
antioxidant capacity against free radicals and have high antimicrobial potential against various human
pathogens in comparison to white wheat. Hence, colored wheat flour and wheat-grass juice are natural
plant-based antimicrobial agents which are capable of providing health benefits to the consumers.
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Kostić, M.; Soković, M.; et al. Promising antioxidant and antimicrobial food colourants from Lonicera caerulea
L. var. kamtschatica. Antioxidants 2019, 8, 394. [CrossRef] [PubMed]

26. Abdel-Aal, S.M.; Young, J.C.; Rabalski, I. Anthocyanin composition in black, blue, pink, purple, and red
cereal grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [CrossRef] [PubMed]

27. Chen, W.; Muller, D.; Richling, E.; Wink, M. Anthocyanin-rich purple wheat prolongs the life span of
Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. J. Agric. Food Chem.
2013, 61, 3047–3053. [CrossRef] [PubMed]

28. Sharma, S.; Chunduri, V.; Kumar, A.; Kumar, R.; Khare, P.; Kondepudi, K.K.; Bishnoi, M.; Garg, M.
Anthocyanin bio-fortified colored wheat: Nutritional and functional characterization. PLoS ONE 2018, 13,
e0194367. [CrossRef] [PubMed]

29. Sharma, S.; Khare, P.; Kumar, A.; Chunduri, V.; Kumar, A.; Kapoor, P.; Mangal, P.; Kondepudi, K.K.;
Bishnoi, M.; Garg, M. Anthocyanin-biofortified Colored Wheat Prevents High Fat Diet-induced Alterations
in Mice: Nutrigenomics Studies. Mol. Nutr. Food Res. 2020, 64, 1900999. [CrossRef] [PubMed]

30. Abdel-Aal, E.S.M.; Hucl, P.; Rabalski, I. Compositional and antioxidant properties of anthocyanin-rich
products prepared from purple wheat. Food Chem. 2018, 254, 13–19. [CrossRef]

31. Abdel-Aal, E.S.M.; Hucl, P. Composition and stability of anthocyanins in blue-grained wheat. J. Agric.
Food Chem. 2003, 51, 2174–2180. [CrossRef]

http://dx.doi.org/10.1007/s10068-014-0107-3
http://dx.doi.org/10.4014/jmb.1004.04037
http://www.ncbi.nlm.nih.gov/pubmed/20798583
http://dx.doi.org/10.6000/1927-3037.2015.04.03.1
http://dx.doi.org/10.3390/molecules23092282
http://www.ncbi.nlm.nih.gov/pubmed/30200643
http://dx.doi.org/10.1016/j.jcs.2016.08.004
http://dx.doi.org/10.1016/S0278-6915(00)00011-9
http://dx.doi.org/10.1177/1934578X1100600136
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.01.035
http://dx.doi.org/10.1016/j.lwt.2015.03.101
http://dx.doi.org/10.3390/antiox8090394
http://www.ncbi.nlm.nih.gov/pubmed/31547323
http://dx.doi.org/10.1021/jf0606609
http://www.ncbi.nlm.nih.gov/pubmed/16787017
http://dx.doi.org/10.1021/jf3054643
http://www.ncbi.nlm.nih.gov/pubmed/23470220
http://dx.doi.org/10.1371/journal.pone.0194367
http://www.ncbi.nlm.nih.gov/pubmed/29617385
http://dx.doi.org/10.1002/mnfr.201900999
http://www.ncbi.nlm.nih.gov/pubmed/32383217
http://dx.doi.org/10.1016/j.foodchem.2018.01.170
http://dx.doi.org/10.1021/jf021043x


Molecules 2020, 25, 5785 17 of 19

32. Liu, Q.; Qiu, Y.; Beta, T. Comparison of antioxidant activities of different colored wheat grains and analysis
of phenolic compounds. J. Agric. Food Chem. 2010, 58, 9235–9241. [CrossRef]

33. Li, Y.; Ma, D.; Sun, D.; Wang, C.; Zhang, J.; Xie, Y.; Guo, T. Total phenolic, flavonoid content, and antioxidant
activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling
methods. Crop J. 2015, 3, 328–334. [CrossRef]

34. Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F.; Blanco, A. Production
and characterization of functional biscuits obtained from purple wheat. Food Chem. 2015, 180, 64–70.
[CrossRef] [PubMed]

35. Li, W.; Beta, T. Flour and bread from black-, purple-, and blue-colored wheats. In Flour and Breads and Their
Fortification in Health and Disease Prevention, 2nd ed.; Victor Preedy, V., Watson, R., Eds.; Elsevier: Amsterdam,
The Netherlands, 2011; pp. 59–67.

36. Kumari, A.; Sharma, S.; Sharma, N.; Chunduri, V.; Kapoor, P.; Goel, A.; Garg, M. Influence of biofortified
colored wheats (purple, blue, black) on physicochemical, antioxidant and sensory characteristics of chapatti
(Indian flatbread). Molecules 2020, 25, 5071. [CrossRef] [PubMed]

37. Havrlentová, M.; Pšenáková, I.; Žofajová, A.; Rückschloss; Kraic, J. Anthocyanins in wheat seed—A mini
review. Nova Biotechnol. Chim. 2014, 13, 1–12. [CrossRef]

38. Francavilla, A.; Joye, I.J. Anthocyanins in Whole Grain Cereals and Their Potential Effect on Health. Nutrients
2020, 12, 2922. [CrossRef] [PubMed]

39. Tang, J.; Oroudjev, E.; Wilson, L.; Ayoub, G. Delphinidin and cyanidin exhibit antiproliferative and apoptotic
effects in MCF7 human breast cancer cells. Integr. Cancer Sci. Ther. 2015, 2, 82–86.

40. Pereira-Caro, G.; Watanabe, S.; Crozier, A.; Fujimura, T.; Yokota, T.; Ashihara, H. Phytochemical profile of a
Japanese black–purple rice. Food Chem. 2013, 141, 2821–2827. [CrossRef]

41. Hao, J.; Zhu, H.; Zhang, Z.; Yang, S.; Li, H. Identification of anthocyanins in black rice (Oryza sativa L.) by
UPLC/QTOF-MS and their in vitro and in vivo anti-oxidant activities. J Cereal Sci. 2015, 64, 92–99. [CrossRef]

42. Abdel-Aal, E.S.M.; Abou-Arab, A.A.; Gamel, T.H.; Hucl, P.J.; Young, C.; Rabalski, I. Fractionation of blue
wheat anthocyanin compounds and their contribution to antioxidant properties. J. Agric. Food Chem. 2008,
56, 11171–11177. [CrossRef]

43. Tyl, C.E.; Bunzel, M. Antioxidant activity-guided fractionation of blue wheat (UC66049 Triticum aestivum L.).
J. Agric. Food Chem. 2012, 60, 731–739. [CrossRef]

44. Ficco, D.B.; De Simone, V.; Colecchia, S.A.; Pecorella, I.; Platani, C.; Nigro, F.; Finocchiaro, F.; Papa, R.; De
Vita, P. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red
bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. J. Agric.
Food Chem. 2014, 62, 8686–8695. [CrossRef]
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